Course Outline

- L1-L5 Specifications, models and loop-shaping by hand
 - 1. Introduction and system representations
 - 2. Stability and robustness
 - 3. Disturbance models
 - 4. Control synthesis in frequency domain
 - 5. Case study
- L6-L8 Limitations on achievable performance
- L9-L11 Controller optimization: Analytic approach
- L12-L14 Controller optimization: Numerical approach

- Introduction/examplesOverview of course
- Review linear systems
 - Review of time-domain models
 - Review of frequencydomain
 - models
 - Norm of signals
 - Gain of systems

Stability is crucial

Lecture 2: Stability and Robustness

- Stability
- Robustness and sensitivity
- Small gain theorem

Demo: "Inverted pendulum"

bicycle

- JAS 39 Gripen
- Mercedes A-class
- ABS brakes

Stability of autonomous systems

The autonomous system

$$\frac{dx}{dt} = Ax(t)$$

is called <u>exponentially stable</u> if the following equivalent conditions hold

1. There exist constants $\alpha, \beta > 0$ such that

$$|x(t)| \le \alpha e^{-\beta t} |x(0)| \qquad \text{for } t \ge 0$$

- 2. All eigenvalues of A are in the <u>left half plane</u> (LHP), that is all eigenvalues have negative real part.
- 3. All roots of the polynomial det(sI A) are in the LHP.

Stability of input-output maps

The transfer function G(s) of a continuous time system, is said to be <u>input-output stable</u> (I/O-stable, or often just called "stable") if the following equivalent conditions hold:

- ▶ All poles of G have negative real part (G is Hurwitz stable)
- ▶ The impulse response of *G* decays exponentially.

Warning: There may be unstable pole-zero cancellations (which also render the system either uncontrollable and/or unobservable) and these may not be seen in the transfer function!!

For discrete time systems the corresponding conditions are : a pulse transfer function ${\cal G}(z)$ of a discrete time system

- All poles of G are inside the unit circle (G is Schur stable).
- ▶ The pulse response of *G* decays exponentially.

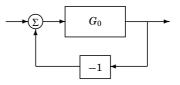
Eigenvalues determine stability

The matrix A can always be written on the form

$$A = U \begin{bmatrix} \lambda_1 & & * \\ & \ddots & \\ 0 & & \lambda_n \end{bmatrix} U^{-1}. \quad \text{Hence } e^{At} = U \begin{bmatrix} e^{\lambda_1 t} & & * \\ & \ddots & \\ 0 & & e^{\lambda_n t} \end{bmatrix} U^{-1}.$$

The number $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A. e^{At} decays exponentially if and only if $Re\{\lambda_k\} < 0$ for all k.

Stability of feedback loops



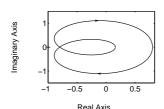
The closed loop system is input-output stable if and only if all solutions to the equation

are in the left half plane (i.e. has negative real part).

The Nyquist criterion

If $G_0(s)$ is stable, then the closed loop system $[1+G_0(s)]^{-1}$ is stable if and only if the Nyquist curve does not encircle -1

The difference between the number of unstable poles in $[1 + G_0(s)]^{-1}$ and the number of unstable poles in $G_0(s)$ is equal to the number of times the point -1 is encircled by the Nyquist plot in the clockwise direction.



Real Axi

NOTE: nyquist-plot cmd in Matlab plots for both positive and negative frequencies!

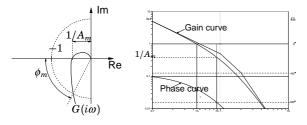
Amplitude and phase margin

Amplitude margin A_m

$$rg G(i\omega_0) = -180^\circ, \ |G(i\omega_0)| = rac{1}{A_m}$$

Phase margin ϕ_m

$$|G(i\omega_c)| = 1$$
, $\arg G(i\omega_c) = \phi_m - 180^\circ$



Mini-problem — Stability margins

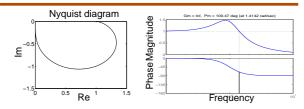


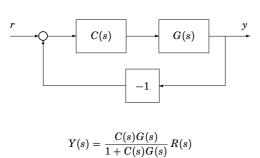
Figure: Nyquist/Bode plots for the nominal transfer function $\frac{(s+1)}{(s^2+s+1)}$

For k = c = 1 the open loop transfer function is

$$\frac{s+1}{s^2+s+1}e^{-sT}$$

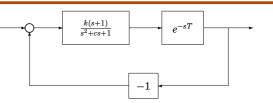
Phase margin = $109 \cdot \frac{\pi}{180}$ rad at $\omega = 1.4 \, rad/s$. A time-delay T corresponds to a phase-delay $arg\{e^{-i\omega T}\} = -\omega T$ Thus the time-delay margin is $109 \cdot \frac{\pi}{180}/1.4 \approx 1.35 \, sec$.

How sensitive is H to changes in G?

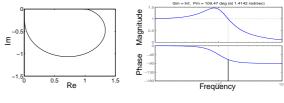


- How sensitive is the closed loop system to model errors?
- How do we measure the "distance to instability"?
- Is it possible to guarantee stability for all systems within some distance from the ideal model?

Mini-problem



Nominally k = 1, c = 1 and T = 0. How much margin is there in each of the parameters before the system becomes unstable?



Mini-problem — Stability margins

Without delay (T=0):

The loop gain L = CP

Closed loop

$$\begin{split} G_{cl} &= \frac{L}{1+L} = \\ &= \frac{\frac{k(s+1)}{s^2 + cs + 1}}{\left(1 + \frac{k(s+1)}{s^2 + cs + 1}\right)} = \\ &= \frac{k(s+1)}{s^2 + cs + 1 + ks + k} = \frac{k(s+1)}{s^2 + s(k+c) + (1+k)} \end{split}$$

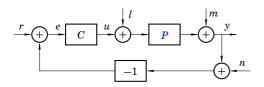
$$\frac{dH}{dG} = \frac{d}{dG} \left(1 - \frac{1}{1 + CG} \right) = \frac{C}{(1 + CG)^2} = \frac{H}{G(1 + CG)}$$

Define the sensitivity function, S:

$$S:=\frac{d(\log H)}{d(\log G)}=\frac{dH/H}{dG/G}=\frac{1}{1+CG}$$

and the complementary sensitivity function T:

$$T:=1-S=\frac{CG}{1+CG}$$



Note that the

- $\begin{tabular}{c} \hline complementary sensitivity function T is the transfer function $G_{r \rightarrow y}$ \end{tabular} \end{tabular}$
- sensitivity function S is the transfer function $G_{m \to y}$

S+T=1

Note: there are four different transfer functions for this closed-loop system and all have to be stable for the system to be stable!

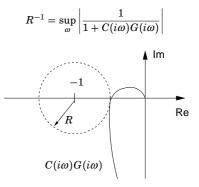
It may be OK to use an unstable controller C

Lecture 2

- Stability
- Robustness and sensitivity
- Small gain theorem

Nyquist plot illustration

The sensitivity function measures the distance from the Nyquist plot to -1.



The L_2 -norm of a signal

For $y(t) \in \mathbf{R}^n$ the " L_2 -norm"

$$\|y\|_2 := \sqrt{\int_0^\infty |y(t)|^2 dt} \quad \text{ is equal to } \quad \sqrt{\frac{1}{2\pi} \int_{-\infty}^\infty |\mathcal{L}y(i\omega)|^2 d\omega}$$

The equality is known as Parseval's formula

The L_2 -gain of a system For a system S with input u and output S(u), the L_2 -gain is defined as

 $\|S\| := \sup_{u} \frac{\|S(u)\|_2}{\|u\|_2}$

Miniproblem

What are the gains of the following systems?

1.	y(t) = -u(t)	(a sign shift)
2.	y(t) = u(t - T)	(a time delay)
3.	$y(t)=\int_0^t u(au)d au$	(an integrator)
4.	$y(t)=\int_0^t e^{-(t- au)}u(au)d au$	(a first order filter)

The L_2 -gain from frequency data

Consider a stable system S with input u and output S(u) having the transfer function G(s). Then, the system gain

$$\|\mathcal{S}\| := \sup_u \frac{\|\mathcal{S}(u)\|_2}{\|u\|_2} \quad \text{is equal to} \quad \|G\|_\infty := \sup_\omega |G(i\omega)|$$

Proof. Let $y = \mathcal{S}(u)$. Then

$$\|y\|^2 = \frac{1}{2\pi} \int_{-\infty}^{\infty} |\mathcal{L}y(i\omega)|^2 d\omega = \frac{1}{2\pi} \int_{-\infty}^{\infty} |G(i\omega)|^2 \cdot |\mathcal{L}u(i\omega)|^2 d\omega \le \|G\|_{\infty}^2 \|u\|^2$$

The inequality is arbitrarily tight when u(t) is a sinusoid near the maximizing frequency.

Definition of vector norm

Definition of matrix norm

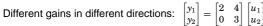
For $M \in \mathbf{R}^{n imes n}$, we use the " L_2 -induced norm"

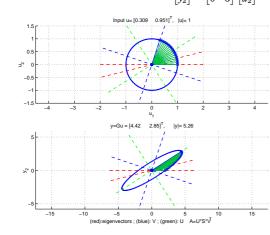
$$\|M\| := \sup_x rac{|Mx|}{|x|} = \sup_x \sqrt{rac{x^T M^T M x}{x^T x}} = \sqrt{ar{\lambda}(M^T M)}$$

Here $\bar{\lambda}(M^T M)$ denotes the largest eigenvalue of $M^T M$. The fraction |Mx|/|x| is maximized when x is a corresponding eigenvector.

For $x \in \mathbf{R}^n$, we use the " L_2 -norm"

$$|x| = \sqrt{x^T x} = \sqrt{x_1^2 + \dots + x_n^2}$$





Example: matlab-demo

>

>

Example: Consider the transfer function matrix $G(i\omega)$

$$G(s) = \begin{bmatrix} \frac{2}{s+1} & \frac{4}{2s+1} \\ \frac{s}{s^2 + 0.1s + 1} & \frac{3}{s+1} \end{bmatrix}$$
>> s=tf('s')
>> G=[2/(s+1) 4/(2*s+1); s/(s^2+0.1*s+1) 3/(s+1)];
>> sigma(G) % plot sigma values of G wrt fq
>> grid on
>> norm(G,inf) % infinity norm = system gain
ans =
10.3577

Example

SVD :

Matlab-code for singular value decomposition of the matrix $A = \begin{bmatrix} 2 \\ 0 \end{bmatrix}$ $\frac{4}{3}$

$$A = U \cdot S \cdot V^*$$

where both the matrices U and V are unitary (i.e. have orthonormal columns s.t. $V^* \cdot V = I$) and S is the diagonal matrix with (sorted decreasing) singular values σ_i . Multiplying A with a input vector along the first column in V gives

$A \cdot V_{(:,1)} = USV^* \cdot V_{(:,1)} =$	>> A*V(:,1)
$= US \begin{bmatrix} 1 \\ 0 \end{bmatrix} = U_{(:,1)} \cdot \sigma_1$	ans =
$= US_{[0]} = U_{(:,1)} \cdot \sigma_1$	4,4296

A=[2 4 ; 0 3]

2 4

0 3 [U,S,V]=svd(A)

0 8416

0.5401

5.2631

0.3198

0.9475

2.8424

= 4.4296 ans

2.8424

>> U(:,1)*S(1,1)

0

-0.5401

0.8416

1.1400

-0.9475

0.3198

0

п

s

v

That is, we get maximal gain σ_1 in the output direction $U_{(:,1)}$ if we use an input in direction $V_{(:,1)}$ (and minimal gain $\sigma_n = \sigma_2$ if we use the last column $V_{(:,n)} = V_{(:,2)}$

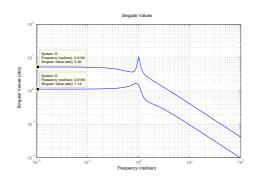
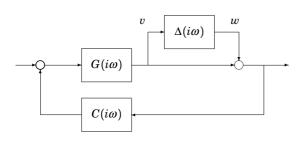


Figure: The singular values of the tranfer function matrix (prev slide). Note that G(0)=[2,4;03] which corresponds to M in the SVD-example above. $||G||_{\infty} = 10.3577$.

The Small Gain Theorem

How large perturbations $\Delta(i\omega)$ can be tolerated without instability?

Robustness

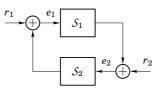


Proof

Define $||y||_T = \sqrt{\int_0^T |y(t)|^2 dt}$. Then $||\mathcal{S}(y)||_T \le ||\mathcal{S}|| \cdot ||y||_T$.

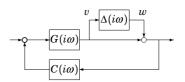
$$\begin{aligned} e_1 &= r_1 + \mathcal{S}_2(r_2 + \mathcal{S}_1(e_1)) \\ \|e_1\|_T &\leq \|r_1\|_T + \|\mathcal{S}_2\| \left(\|r_2\|_T + \|\mathcal{S}_1\| \cdot \|e_1\|_T \right) \\ \|e_1\|_T &\leq \frac{\|r_1\|_T + \|\mathcal{S}_2\| \cdot \|r_2\|_T}{1 - \|\mathcal{S}_1\| \cdot \|\mathcal{S}_2\|} \end{aligned}$$

This shows bounded gain from (r_1, r_2) to e_1 . The gain to e_2 is bounded in the same way.



Assume that \mathcal{S}_1 and \mathcal{S}_2 are input-output stable. If $\|\mathcal{S}_1\| \cdot \|\mathcal{S}_2\| < 1$, then the gain from (r_1, r_2) to (e_1, e_2) in the closed loop system is finite.

Application to robustness analysis



The transfer function from w to v is

 $C(i\omega)G(i\omega)$ $1 + C(i\omega)G(i\omega)$

Hence the small gain theorem guarantees stability if

$$\|\Delta\|_{\infty} < \left(\sup_{\omega} \left\|\frac{C(i\omega)G(i\omega)}{1+C(i\omega)G(i\omega)}\right\|\right)^{-1}$$

Lecture 2
Stability
 Robustness and sensitivity
 Small gain theorem