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Lecture 10: Optimal Kalman Filtering

◮ Observer Based Feedback

◮ The Optimal Kalman filter

◮ LQG by Separation

◮ Stochastic interpretations

Textbook sections 9.1-9.4 and 5.7

Linear Quadratic Gaussian Control (LQG)
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control inputs u

controlled variables z
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distubances v

For a linear plant, minimize a quadratic function of the map

from disturbance v to controlled variable z

Minimize trace
∫∞
−∞ QGzv(iω )Gzv(iω )

∗dω

Last week: State feedback solution.

Output feedback using state estimates

Plant
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v

u x̂y

z

Plant:

{
ẋ(t) = Ax(t) + Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)

Controller:

{
d
dt
x̂(t) = Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

Closed loop dynamics

Eliminate u and y:

d

dt
x(t) = Ax(t) − BLx̂(t) + v1(t)

d

dt
x̂(t) = Ax̂(t) − BLx̂(t) + K [Cx(t) − Cx̂(t)] + Kv2(t)

Introduce x̃ = x − x̂

d

dt

[
x(t)
x̃(t)

]
=

[
A− BL BL

0 A− KC

] [
x(k)
x̃(k)

]
+

[
v1(t)

v1(t) − Kv2(t)

]

Two kinds of closed loop poles

Process poles: 0 = det(sI − A+ BL)

Observer poles: 0 = det(sI − A+ KC)

Rudolf Kalman, (born 1930)

Recipient of the 2008 Charles Stark Draper Prize from the

US National Academy of Engineering "for the devlopment and

dissemination of the optimal digital technique (known as the

Kalman Filter) that is pervasively used to control a vast array of

consumer, health, commercial and defense products.”

Prediction and filtering

* Wiener (1949) Stationary I/O case

* Kalman and Bucy (1960) Time-varying state-space

Estimate x(k+m) given {y(i), u(i) p i ≤ k}

Examples

Smoothing To estimate the Wednesday temperature based on

temperature measurements from Monday,

Tuesday and Thursday

Filtering To estimate the Wednesday temperature based on

temperature measurements from Monday,

Tuesday and Wednesday (helps to reduce

measurement error)

Prediction To predict the Wednesday temperature based on

temperature measurements from Sunday, Monday

and Tuesday

Norbert Wiener, 1894–1964
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The Kalman Filter Optimization Problem

Plant

Estimator-

�

R1/2� ��M�

y

v

x̂

wx̃z = Mx̃

Minimize error variance when v is white noise with intensity R:

Epzp2 =
1

2π

∫ ∞

−∞
MGexv(iω )R Gexv(iω )

∗MTdω

Equivalent reformulations

The time domain version of the optimization problem can be

written

Minimize
∫∞
0
M�exv(t)R �exv(t)

TMTdt

Given the error dynamics

d

dt
x̃(t) = [A− KC]x̃(t) + v1(t) − Kv2(t)

the impulse response from v to x̃ is

�exv(t) = e
(A−KC)t[I − K ]

so K should be chosen to

Minimize

∫ ∞

0

Me(A−KC)t[I − K ]R[I − K ]T e(A−KC)
T tMTdt

Recall lecture 9: Linear Quadratic Optimal Control

For the system ẋ = Ax(t) + Bu(t), x(0) = x0 with control law
u = −Lx consider the cost

∫ ∞

0

[
x(t)
u(t)

]T
Q

[
x(t)
u(t)

]
dt =

∫ ∞

0

xT0 e
(A−BL)T t

[
I

−L

]T
Q

[
I

−L

]
e(A−BL)tx0dt

The minimal cost is achieved by L = Q−12 (SB + Q12)
T , where

S > 0 solves

0 = Q1 + A
TS+ SA− (SB + Q12)Q

−1
2 (SB + Q12)

T

The minimal value of the integral is xT0 Sx0.

The solution can be reused to get the optimal Kalman filter!

Optimal Kalman Filtering — The Solution

The Kalman filter d
dt
x̂(t) = Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

gives the error covariance

EpMx̃p2 =

∫ ∞

0

Me(A−KC)t
[
I −K

]
R

[
I −K

]T
e(A−KC)

T tMTdt

The minimal error covariance is achieved by K = (PCT + R12)R
−1
2

where P > 0 solves

0 = R1 + AP + PA
T − (PCT + R12)R

−1
2 (PC

T + R12)
T

Remark: Notice that K is independent of M . Hence the same

filter is optimal regardless of which state we want to estimate!

The minimal error covariance is Ex̃ x̃T = P.

Example 1 – Kalman filter

ẋ(t) = v(t) Ev2 = R1

y(t) = x(t) + e(t) Ee2 = R2

dx̂

dt
= Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

Riccati equation 0 = R1 − P
2/R2 [ P =

√
R1R2

Filter gain K = P/R2 =
√
R1/R2

Error dynamics
dx̃

dt
= −

√
R1/R2 x̃

Error covariance Ex̃2 = P =
√
R1R2

Example 2 – Tracking of a moving object

Dotted ellipses show estimates based on only a model with

known initial state. Solid ellipses show Kalman filter estimates

based on noisy measurements.

Output feedback using state estimates

Plant
�

Estimator
-

�

−L
�

-

�

v

u x̂y

z

Plant:

{
ẋ(t) = Ax(t) + Bu(t) + v1(t)

y(t) = Cx(t) + v2(t)

Controller:

{
d
dt
x̂(t) = Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

Minimize Epzp2 = E
(
xTQ1x + 2x

TQ12u+ u
TQ2u

)

when v is white noise of intensity R

The idea of separation

The state feedback control law is independent of R

The Kalman filter minimizes EpMx̃p2 independently of M

This makes it possible to optimize the control law

u(t) = −Lx̂(t) and the estimator separately.
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Linear Quadratic Optimal Control (LQG)

Given the linear plant




ẋ(t) = Ax(t) + Bu(t) + Nv1(k)

y(t) = Cx(t) + v2(t)

z(t) =
"
x(t)

u(t)

#

Q =

[
Q1 Q12
QT12 Q2

]

R =

[
R1 R12
RT12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt
x̂ = Ax̂ + Bu+ K [y− Cx̂]. The frequency integral

trace
1

2π

∫ ∞

−∞
QGzv(iω )RGzv(iω )

∗dω

is minimized when K and L satisfy

0 = Q1 + A
TS + SA− (SB + Q12)Q

−1
2 (SB + Q12)

T L = Q−12 (SB + Q12)
T

0 = NR1N
T + AP + PAT − (PCT + NR12)R

−1
2 (PC

T + NR12)
T K = (PCT + NR12)R

−1
2

The minimal value of the integral is

tr(SNR1N
T) + tr[PLT (BTSB + Q2)L]

Stochastic Interpretation of LQG Control

Given white noise v and the linear plant
{
ẋ(t) = Ax(t) + Bu(t) + Nv1(k)

y(t) = Cx(t) + v2(t)
E

[
v1
v2

] [
v1
v2

]T
=

[
R1 R12
RT12 R2

]

consider controllers of the form u = −Lx̂ with
d
dt
x̂ = Ax̂ + Bu+ K [y− Cx̂]. The stationary variance

E

(
xTQ1x + 2x

TQ12u+ u
TQ2u

)

is minimized when

K = (PCT + NR12)R
−1
2 L = Q−12 (SB + Q12)

T

0 = Q1 + A
TS + SA− (SB + Q12)Q

−1
2 (SB + Q12)

T

0 = NR1N
T + AP + PAT − (PCT + NR12)R

−1
2 (PC

T + NR12)
T

The minimal variance is

tr(SNR1N
T) + tr[PLT (BTSB + Q2)L]

Duality between control and estimation

Optimal control State estimation

A AT

B CT

Q1 R1
Q2 R2
Q12 R12
S P

L KT

Example

Consider the problem to minimize E(Q1x
2 + Q2u

2) for

{
ẋ(t) = u(t) + v1(t)

y(t) = x(t) + v2(t)
E

[
v1
v2

] [
v1
v2

]T
=

[
R1 0

0 R2

]

The observer based controller
{
d
dt
x̂(t) = Ax̂(t) + Bu(t) + K [y(t) − Cx̂(t)]

u(t) = −Lx̂(t)

is optimal for K and L computed as follows:

0 = Q1 − S
2/Q2 [ S =

√
Q1Q2 [ L = S/Q2 =

√
Q1/Q2

0 = R1 − P
2/R2 [ P =

√
R1R2 [ K = P/R2 =

√
R1/R2


