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Course outline

L1-L5 Purpose, models and loop-shaping by hand

L6-L8 Limitations on achievable performance

L9-L11 Controller optimization: Analytic approach

L12-L14 Controller optimization: Numerical approach

Lecture 9: Linear Quadratic Control

◮ Why Linear Quadratic Control?

◮ Dynamic Programming

◮ Riccati equation

◮ Optimal State Feedback

The sections 9.1-9.4 in the book treat essentially the same

material as we cover in lecture 9-11. However, the main

derivation of the LQG controller in appendix 9A is different.

Math Repetition

Suppose the matrix Q is symmetric: Q = QT . Then

◮ Q > 0 means that xTQx > 0 for any x ,= 0
◮ True iff all eigenvalues of Q are positive.
◮ We say that Q is positive definite.

◮ Q ≥ 0 means that xTQx ≥ 0 for any x ,= 0
◮ True iff all eigenvalues of Q are non-negative.
◮ We say that Q is positive semidefinite.

Math Repetition

The trace of a matrix is the sum of all diagonal elements:

trace Q =
n

∑

i

Qii

A useful property of the matrix trace:

trace ABC = trace CAB = trace BCA

Parseval’s formula: Suppose that f (t) and �(t) have finite

energy and that their Laplace transforms are F(s) and G(s),
respectively. Then

2π

∫ ∞

−∞
f (t)∗�(t)dt =

∫ ∞

−∞
F(iω )∗G(iω )dω

Thickness control in paper machine
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Setpoint for controller

Setpoint for controller
with good tuning

with bad tuning

Test limit

Paper thickness

All paper production below the test limit is wasted.

Good control allows for lower setpoint with the same waste.

The average thickness is lower, which saves significant costs.

A General Optimization Setup

Plant

Controller

� �

�

-

control inputs u

controlled variables z

measurements y

distubances w

The objective is to find a controller that optimizes the transfer

matrix Gzw(s) from disturbances w to controlled outputs z.

Lecture 9-11: Problems with analytic solutions

Lectures 12-14: Problems with numeric solutions

Linear Quadratic Gaussian Control (LQG)

Plant
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control inputs u

controlled variables z

measurements y

distubances w

For a linear plant, minimize a quadratic function of the map

from disturbance w to controlled variable z

Minimize trace
∫∞
−∞ QGzw(iω )Gzw(iω )∗dω

Two interpretations of this criterion...

Impulse response optimization

Let �zw(t) be the impulse response corresponding to the
transfer function Gzw(s). Then

trace

∫ ∞

−∞
QGzw(iω )Gzw(iω )∗dω = 2π trace

∫ ∞

0

Q�zw(t)�zw(t)∗dt

so LQG control minimizes the impulse response “energy”.
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Stochastic interpretation of LQG

Plant

Controller-

�
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u

qzq2Q = E(zTQz) = trace
1

2π

∫ ∞

−∞
QGzv(iω )Φv(ω )Gzv(iω )∗dω

is the weighted output variance when the input v has spectral density

Φv(ω ) = V (iω )V (iω )∗. Hence the output variance can be minimized
by defining Gzw(iω ) = Gzv(iω )V (iω ) and solving the LQG problem

Minimize trace

∫ ∞

−∞
QGzw(iω )Gzw(iω )∗dω

Today’s problem: State Feedback

Plant

Controller
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-

u

z = (x,u) x0

state measurement x

Minimize

∫ ∞

0

(

x(t)TQ1x(t) + 2x(t)TQ12u(t) + u(t)TQ2u(t)
)

dt

subject to ẋ = Ax(t) + Bu(t), x(0) = x0

(

This minimizes impulse response
∫∞
0
zT

[

Q1 Q12
QT
12

Q2

]

zdt when z =
[

x

u

]

)

Mini-problem

Determine u0 and u1 as functions of x0 if the objective is to

minimize

x21 + x22 + u20 + u21

when

x1 = x0 + u0
x2 = x1 + u1

Hint: Go backwards in time.

Dynamic programming, Richard E. Bellman 1957

T1 T1 + ǫ T

An optimal trajectory on the time

interval [T1,T ] must be optimal

also on each of the subintervals

[T1,T1 + ǫ] and [T1 + ǫ,T ].

Dynamic programming in linear quadratic control

T1 T1 + ǫ T

An optimal trajectory on the time interval [T1,T ] must be optimal also on each

of the subintervals [T1,T1 + ǫ] and [T1 + ǫ,T ].

Let xTSx be the optimal cost on the time interval [T1,∞]:

xTSx = min
u

∫ ∞

T1









x

u









T 







Q1 Q12
QT12 Q2

















x

u








dt with x(T1) = x

Let u = u(T1). Split interval to [T1,T1 + ǫ] and [T1 + ǫ,∞] with ǫ small.

Neglecting ǫ
2 gives x(T1 + ǫ) = x + (Ax + Bu)ǫ

Dynamic programming in linear quadratic control

x(T1) = x, x(T1 + ǫ) = x + (Ax + Bu)ǫ

xTSx = min
u

∫ ∞

T1









x

u









T 







Q1 Q12
QT12 Q2

















x

u








dt

= min
u

{
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ǫ+

∫ ∞

T1+ǫ









x

u









T 







Q1 Q12
QT12 Q2

















x

u








dt

}

= min
u

{









x

u









T 







Q1 Q12
QT12 Q2

















x

u








ǫ+

[

x + (Ax + Bu)ǫ
]T

S
[

x + (Ax + Bu)ǫ
]

}

by definition of S. Again neglecting ǫ
2 gives Bellman’s

equation:

0 = min
u

[(

xTQ1x + 2xTQ12u+ uTQ2u
)

+ 2xTS
(

Ax + Bu
)

]

Completion of squares

The scalar case: Suppose c > 0.

ax2 + 2bxu+ cu2 = x
(

a− b
2

c

)

x +
(

u+ b
c
x

)

c

(

u+ b
c
x

)

is minimized by u = − b
c
x. The minimum is

(

a− b2/c
)

x2.

The matrix case: Suppose Qu > 0. Then

xTQxx + 2xTQxuu+ uTQuu
= (u+ Q−1u QTxux)TQu(u+ Q−1u QTxux) + xT(Qx − QxuQ−1u QTxu)x

is minimized by u = −Q−1u QTxux. The minimum is

xT(Qx − QxuQ−1u QTxu)x.

The Riccati Equation

Completion of squares in Bellman’s equation gives

0 = min
u

((

xTQ1x + 2xTQ12u+ uTQ2u
)

+ 2xTS
(

Ax + Bu
)

)

= min
u

(

xT [Q1 + ATS+ SA]x + 2xT [Q12 + SB]u+ uTQ2u
)

= xT
(

Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T
)

x

with minimum attained for u = −Q−12 (SB + Q12)T x.

The equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

is called the algebraic Riccati equation
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Jocopo Francesco Riccati, 1676–1754 Linear Quadratic Optimal Control

Problem:

Minimize

∫ ∞

0

(

x(t)TQ1x(t) + 2x(t)TQ12u(t) + u(t)TQ2u(t)
)

dt

subject to ẋ = Ax(t) + Bu(t), x(0) = x0

Solution: Assume (A, B) controllable. Then there is a unique

S > 0 solving the Riccati equation

0 = Q1 + ATS+ SA− (SB + Q12)Q−12 (SB + Q12)T

The optimal control law is u = −Lx with L = Q−12 (SB + Q12)T .

The minimal value is xT0 Sx0.

Remark: The feedback gain L does not depend on x0

Example: First order system

For ẋ(t) = u(t), x(0) = x0,

Minimize

∫ ∞

0

{

x(t)2 + ρu(t)2
}

dt

Riccati equation 0 = 1− S2/ρ [ S = √ρ

Controller L = S/ρ = 1/√ρ [ u = −x/√ρ

Closed loop system ẋ = −x/√ρ [ x = x0e−t/
√

ρ

Optimal cost

∫ ∞

0

{

x2 + ρu2
}

dt = xT0 Sx0 = x20
√

ρ

What values of ρ give the fastest response? Why?

What values of ρ give smallest optimal cost? Why?

Theorem: Stability of the closed-loop system

Assume that

Q =








Q1 Q12
QT12 Q2









is positive definite and that there exists a positive-definite

steady-state solution S to the algebraic Riccati equation. Then

the optimal controller u(t) = −Lx(t) gives an asymptotically

stable closed-loop system ẋ(t) = (A− BL)x(t).
Proof:

d

dt
x(t)TSx(t) = 2xTSẋ = 2xTS(Ax + Bu)

= −
(

xTQ1x + 2xTQ12u+ uTQ2u
)

< 0 for x(t) ,= 0

Hence x(t)TSx(t) is decreasing and tends to zero as t→∞.

How to solve the LQ problem in Matlab

[L,S,E] = LQR(A,B,Q,R,N) calculates the optimal gain

matrix L such that the state-feedback law u = -Lx

minimizes the cost function

J = Integral x’Qx + u’Ru + 2*x’Nu dt

subject to the system dynamics dx/dt = Ax + Bu

E = EIG(A-B*L)

LQRD solves the corresponding discrete time problem

Example – Double integrator

A =








0 1

0 0








B =









0

1








Q1 =









1 0

0 0








Q2 = ρ x(0) =









1

0









States and inputs (dotted) for ρ = 0.01, ρ = 0.1, ρ = 1, ρ = 10
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Closed loop poles:

s = 2−1/2ρ−1/4(−1± i)
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Stability robustness of optimal state feedback
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Nyquist Diagram
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Notice that the distance from L(iω I − A)−1B to −1 is never

smaller than 1. This is always true(!) for linear quadratic optimal

state feedback when Q1 > 0, Q12 = 0 and Q2 = ρ > 0 is scalar.

Hence the phase margin is at least 60○.

Proof of stability robustness

Using the Riccati equation

0 = Q1 + ATS+ SA− LTQ2L L = Q−12 (SB + Q12)T

it is possible to show that

[

I + L(iω − A)−1B
]∗
Q2

[

I + L(iω − A)−1B
]

=
[

(iω − A)−1B
I

]∗ [
Q1 Q12
Q∗
12

Q2

][

(iω − A)−1B
I

]

In particular, with Q1 > 0, Q12 = 0, Q2 = ρ > 0
[

1+ L(iω − A)−1B
]∗

ρ
[

1+ L(iω − A)−1B
]

= BT [(iω − A)−1]∗Q1(iω − A)−1B + ρ

≥ ρ

Dividing by ρ gives

p1+ L(iω − A)−1Bp ≥ 1


