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Lecture 7: Fundamental Limitations

◮ System limitations – examples
◮ Motivation from loop shaping
◮ The concepts of minimum and non-minimum phase

◮ How magnitude and phase are coupled

◮ Intuitive arguments for limitations
◮ the Bode integral theorem
◮ Bicycle example
◮ The Maximum Modulus Theorem
◮ Limitations imposed by

◮ unstable poles
◮ nonminimum-phase zeros (zeros in RHP)

Based on material from K.J Åström and A. Rantzer

See lecture notes and [G&L Ch. 7]

Limitations: Controllability [from lec 6]
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Frequency specs

We typically have low frequency specs for disturbance rejection
and high frequency specs for measurement noise rejection and
robustness
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We will have the cross-over frequency wc with stability margins
Am and φm in the range between “low” and “high fq”.

Loop Shaping Methods

◮ Shape the loop frequency range by frequency range
◮ Lag compensation (performance, disturbance attenuation,

AK)
◮ Lead compensation (robustness, phase margin, AK)
◮ High frequency roll-off (robustness, unmodeled high

frequency, AK?)
◮ Notch filters (reduce gain at certain frequencies)
◮ Slope n�c at crossover frequency ω �c and phase margin

ϕm ( 180○ + n�c90○
︸ ︷︷ ︸

approximation

(minimum phase systems)

Bodes Ideal Loop Transfer Function

The repeater problem. Large gain vari-
ations in vacuum tube amplifiers. What
should a transfer function look like to be
independent of gain?

L(s) =
( s

ω �c

)n

The approximate version of Bodes rela-
tions is exact for L(s). Phase margin in-
variant with loop gain.

ωmin

ωmax

The slope n = −1.5 gives the phase margin ϕm = 45○.

Q: How do we get slope -1.5?

Trade-offs
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◮ Blue curve slope n = −5/3 phase margin ϕm = 30○
◮ Red curve slope n = −1 phase margin ϕm = 90○
◮ Making the curve steeper reduces the frequency range but

also the phase margin

Magnitude and phase relations

Q: How “fast / steep” can we have the magnitude of the loop
gain PC to go between these areas and still have positive
phase margin φm?

Bode’s relation (See Th 7.1 and 7.2 in [G&L]) describes the
relation between the magnitude curve and the phase curve.

Remember the basic rules for sketching Bode diagrams how poles and zeros

relate to the slope of the magnitude curve (’breakpoints and asymptotes’) and

how the corresponding phase curve will look like.

Non-minimum Phase Systems

Dynamics poses a severe limitation on achievable performance
for systems with

◮ Right half plane poles
◮ Right half plane zeros
◮ Time delays

Bode introduced the concept non-minimum phase to capture
this. A system is minimum phase system if all its poles and
zeros are in the left half plane.

How should dynamics limitations be captured quantitatively?
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Bode’s Relations

For minimum phase systems the phase curve is given by the
gain curve and vice versa. The exact relations are given by
Bodes relation(s). (only in one direction here)

argG(iω 0) =
2ω 0
π

∫ ∞

0

log pG(iω )p − log pG(iω 0)p
ω 2 −ω 20

dω

= 1
π

∫ ∞
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∣
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= π
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Proven by contour integration
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Almost like impulse – cuts out at ω = ω 0

Non-minimum Phase Systems

Factor process transfer function as P(s) = Pmp(s)Pnmp(s) such
that pPnmp(iω )p = 1 and Pnmp has negative phase. Requiring a
phase margin ϕm we get

arg L(iω �c) = arg Pnmp(iω �c) + arg Pmp(iω �c) + arg C(iω �c)
≥ −π +ϕm

Approximate arg (Pmp(iω �c)C(iω �c)) ( nπ /2 gives

arg Pnmp(iω �c) ≥ −π +ϕm − n
π

2

This equation called, the phase crossover inequality. Equality
holds exactly if PnmpC is Bode’s ideal loop transfer function, the
expression is an approximation for other designs if n is the
slope at the crossover frequency.

The Crossover Frequency Inequality

The inequality

arg Pnmp(iω �c) ≥ −π +ϕm − n�c
π

2

says that the phase lag of the non-minimum phase component
must not be too large at the crossover frequency!

Simple rules of thumb:

◮ ϕm = 45○ and n�c = −1 gives

arg Pnmp(iω �c) ≥ −
π

4
= −0.8 [rad], 45○

◮ ϕm = 45○ and n�c = −0.5 gives

arg Pnmp(iω �c) ≥ −
π

2
= −1.6 [rad], 90○

Non-minimum phase components may only have a phase-lag
of at most 45○ − 90○ at the gain cross over frequency!

Bode Plots Should Look Like This
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Unstable poles - “intuitive reasoning”

An unstable pole pmakes the output signal for a bounded input
grow exponentially as ∼ ept. To stabilize this system, one
require measurements witha frequency content up to ∼ 1/p.

One can only tolerate time-delays T ≪ 1
p

System with RHP Pole – bandwidth constraints

NMP part of transfer function

Pnmp(s) =
s+ p
s− p

Notice normalization P(0) < 0!
Cross over frequency inequality 0 0.2 0.4 0.6 0.8 1
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−2arctan p
ω �c

≥ −π +ϕm − n�c
π

2

Hence
ω �c ≥

p

tan(π
2
− ϕm
2
+ n�c π

4
)

The simple rule of thumb (ϕ la�nmp = π /4) gives ω �c ≥ 2.4p

Bike example

A (linearized) torque balance for a bicycle can be approximated
as

J
d2θ

dt2
= m�{θ + mV0{

b

(

V0β + a
dβ

dt

)
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Bike example, cont’d

J
d2θ

dt2
= m�{θ + mV0{

b

(

V0β + a
dβ

dt

)

where the physical parameters have typical values as follows:

Mass: m = 70 kg
Distance rear-to-center: a = 0.3m
Height over ground: { = 1.2 m
Distance center-to-front: b = 0.7 m
Moment of inertia: J = 120 kgm2

Speed: V0 = 5 ms−1

Acceleration of gravity: � = 9.81 ms−2

The transfer function from β to θ is

P(s) = mV0{
b

as+ V0
Js2 −m�{

Bike example, cont’d

The system has an unstable pole p with time-constant

p−1 =
√

J

m�{ ( 0.4 s

The closed loop system must be at least as fast as this.
Moreover, the transfer function has a zero z with

z−1 = − a
V0
( 0.06s

For the back-wheel steered bike we have the same poles but
different sign of V0 and the zero will thus the be in the RHP!

Systems with time-delay – "intuitive"

Assume that the plant contains a time-delay T . This means e.g.
that a load disturbance is not visible in the output signals until
after at least T time unit. This corresponds roughly to a
frequency of 1/T and it is thus unrealistic to try to achieve a
higher bandwidth or cross-over frequency.

How do we see this inherent constraint in the analysis?

System with Time Delay

NMP part of transfer function

Pnmp(s) = e−sT

Cross over frequency inequality

ω �cT ≤ π −ϕm + n�c
π

2

The simple rule of (ϕ la�nmp = π /4) gives

ω �cT ≤
π

4
= 0.8

Notice e−sT ( 1−sT/2
1+sT/2 , zero at s = 2/T , rule for RHP zero

(ω �c < 0.4z) gives same result.

Nonminimum-phase Zeros - "intuitive"

The step response of a system with a process zero in the right

half plane (i.e, with positive real part) goes initially in the "wrong
direction".

The time constant for this dynamics is ∼ 1/z and puts an upper
limit for how fast control can be made.

The Laplace transform of the system output signal G(s)U(s)
will be 0 if we evaluate it at s = z where z is a process zero.
If we in particular look at the step response, call it y(t), and its
Laplace transform we get

0 = Y(s)s=z = Y(z) =
∫ ∞

0

y(t) e−zt
︸︷︷︸

>0
dt

To satisfy the equation we must have that y(t) takes both
positive and negative values!

System with RHP Zero – bandwidth

NMP part of transfer function

Pnmp(s) =
z− s
z+ s

Notice normalization P(0) > 0!
Cross over frequency inequality 0 2 4 6
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arg Pnmp(iω �c) = −2arctan
ω �c
z
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π

2

Hence
ω �c
z
≤ tan(π

2
− ϕm
2
+ n�c

π

4
)

The simple rule of thumb (ϕ la�nmp = π /4) gives

ω �c < 0.4z

In-phase and Reverse-phase Systems

Example

P(s) = 1
s2
− k

s2 + 1 =
(1− k)s2 + 1
s2(s2 + 1)

If k > 1 the system has a RHP zero at

z = 1√
k− 1

and the simple rule (ϕ la�nmp = π /4) limits the gain crossover
frequency to

ω �c < z = 0.4
1√
k− 1

k > 1 1.01 1.1 1.25 2 10 100
ω �c ∞ 100 3.2 2 1 0.33 0.10

System with RHP Pole and Zero Pair

NMP part of transfer function

Pnmp(s) =
(z− s)(s+ p)
(z+ s)(s− p)

Notice normalization! 0 0.5 1 1.5 2
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For z > p the cross over frequency inequality becomes

ϕm < π + n�c
π

2
− 2arctan 2

√

p/z
1− p/z

With n�c = −0.5 we get

z/p 2 2.24 4.11 5 5.83 8.68 10 20
ϕm -6.0 0 30 38.6 45 60 64.8 84.6
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The sensitivity function

S = 1

1+ PC

and the complementary sensitivity function

T = PC

1+ PC

satisfy
S+ T = 1

Q: Can we make pS(iω )p ≤ 1 for all ω ?

Bode’s Integral theorem (“The water bed effect”)

Bode’s Integral theorem

See [G&L Theorem 7.3] for details/asumptions.

For a system with loop gain L = PC which has a relative
degree ≥ 2 the following conservation law for the sensitivity

function S = 1

1+ L holds.

∫ +∞

0

lo�pS(iω )pdω = 0+ π

M∑

i=1
Re(pi)

where {pi}M1 are the M unstable poles in the loop gain L.

Note: We want to keep the sensitivity function low. One can see
that if there are unstable poles in L these increase the average
level of S.

( G. Stein: –"Conservation of “dirt!”")

Picture from Gunter Steins Bode Lecture (1985) “Respect the
unstable”. Reprint in [IEEE Control Systems Magazine (Aug 2003)]

Constraints on S and T

In the lecture on loop shaping [lecture 4] we used specifications
of the form

pS(iω )p ≤ pW−1
S (iω )p

pT(iω )p ≤ pW−1
T (iω )p

We will see that if there are zeros in the right half plane (so
called nonminimum phase zeros) and/or unstable poles in the
loop gain L = PC, this will put constraints on what
specifications WS and WT we can satisfy.

To prove some of the following constraints on S and T we will
use “The Maximum Modulus Theorem” which is introduced on
the next slides.

The Maximum Modulus Theorem

Theorem (The Maximum Modulus Theorem)

Suppose that the function f is analytic in a set containing the

unit disc. Then

max
pzp≤1

p f (z)p = max
pzp=1

p f (z)p

In Laplace transform applications, the stability boundary will be
the imaginary axis. It is therefore convenient to note that for
every stable rational transfer function G(s), analytic in the right
half plane, the function

f (z) = G
(
1+ z
1− z

)

is analytic in the unit disc. Hence the Maximum Modulus
Theorem can be applied to give the following corollary (see
next slide):

The Maximum Modulus Theorem, cont’d

Corollary

Suppose that all poles of the rational function G(s) have
negative real part. Then

max
Re s≥0

pG(s)p = max
ω∈R

pG(iω )p

OK, let’s continue...
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Sensitivity bounds from nonmin phase zeros

It is easy to see that the sensitivity function must be equal to
one at an unstable zero s = zu of the transfer function:

P(s = zu) = 0 [ S(zu) :=
1

1+ P(zu)
︸ ︷︷ ︸

0

C(zu)
= 1

Notice that the unstable zero in the plant can not be cancelled
by an unstable pole in the controller, since this would give an
unstable transfer function C/(1+ PC) from measurement noise
to control input.

Sensitivity bounds from unstable poles

Similarly, the complimentary sensitivity must be one at an
unstable pole pu:

P(pu) = ∞ [ T(pu) :=
P(pu)C(pu)
1+ P(pu)C(pu)

= 1

In this case, cancellation by an unstable zero in the controller
would give an unstable transfer function P/(1+ PC) from input
disturbance to plant output.

Spec. for disturbance rejection

Recall that disturbance rejection requires small sensitivity for
small frequencies. One way to formalize this condition is to
define a weighting function

Wa(s) =
s+ a
2s

and require that

sup
ω
pWa(iω )S(iω )p ≤ 1 (1)

for some value of a (see figure below). Satisfying (1) with a
high value of a means fast disturbance rejection.

log pWap

a logω

0

The specification requires that S(s) has a zero in the origin.
This is often obtained by an integrator in the controller.
Moreover, Corollary 1 implies that

sup
ω
pWa(iω )S(iω )p = sup

Re s≥0
pWa(s)S(s)p ≥ pWa(zi)p

for every unstable zero zi of the plant P.

In particular, the specification (1) is impossible to satisfy unless
pWa(zi)p ≤ 1, or in other words a ≤ zi, for every RHP zero zi.

Hence the RHP zeros give an upper bound on the achievable

bandwidth.

Spec. for noise rejection/robustness

Suppose that the plant P(s) has unstable poles pj . Define the
weighting function Wb(s) = (s+ b)/(2b). Then the specification

sup
ω

∣
∣
∣W
b(iω )T(iω )

∣
∣
∣ ≤ 1

is impossible to meet with a stabilizing controller unless

b ≥ max
j
pj

Hence unstable poles give a lower bound on the needed

bandwidth.

log pWbp

b logω

0

Apply what you have learnt to save time and effort!

Example - The X-29

Advanced experimental aircraft. Much design effort was done
with many methods and much cost. Specifications ϕm = 45○
could not be reached. Here is why!

Non-minimum phase part of the
transfer function

Pnmp(s) =
s− 26
s− 6

The zero pole ratio is z/p = 4.33
with n�c = −1/2 we get ϕm =
32○

Not possible to get a phase
margin of 45○!

See more in [G. Stein: Respectct the unstable]

Klein’s Bicycle with Rear Wheel Steering

Richard Klein at UIUC has built several UnRidable Bicycles
(URBs). We have versions in Lund

Transfer function

P(s) = am{V0
bJ

−s+ V0
a

s2 − m�{
J

Pole at p =
√

m�{
J

( 3 rad/s

RHP zero at z = V0
a

Pole independent of velocity but zero proportional to velocity.
There is a velocity such that z = p and the system is
uncontrollable. The system is difficult to control robustly if z/p is
in the range of 0.25 to 4.
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UCSB Version Bonus material: Time Delay and RHP Pole

NMP part of process transfer function

Pnmp(s) =
s+ p
s− pe

−sT .

arg Pnmp(iω �c) = −2arctan
p

ω �c
−ω �cT > −π +ϕm − n�c

π

2

Hence

2arctan
pT

√

2pT − (pT)2
+ pT

√

2pT − (pT)2 < π −ϕm + n�c
π

2

Stability condition pT < 2, Why? The simple rules:

n�c = −0.5, ϕm = π /4 gives pT < 0.33.
n�c = −1, ϕm = π /4 gives pT < 0.07.

Stabilizing an Inverted Pendulum with Delay

Right half plane pole at

p =
√
�
{

With a neural lag of 0.07 s and pT < 0.33 we find { > 0.45.
A vision based system with sampling rate of 50 Hz gives a time
delay of 0.02 s, this gives { > 0.036.

Summary of Limitations - Part 1

Developed by assuming Bode’s ideal loop transfer function

◮ A RHP zero z gives an upper bound to bandwidth

ω �c
z
≤

{

0.5 for Ms, Mt < 2
0.2 for Ms, Mt < 1.4.

◮ A time delay T gives an upper bound to bandwidth

ω �cT ≤
{

0.7 for Ms, Mt < 2
0.37 for Ms, Mt < 1.4.

◮ A RHP pole p gives a lower bound to bandwidth

ω �c
p
≥

{

2 for Ms, Mt < 2
5 for Ms, Mt < 1.4.

Summary of Limitations - Part 2

◮ RHP poles and zeros must be sufficiently separated

z

p
≥

{

6.5 for Ms, Mt < 2
14.4 for Ms, Mt < 1.4.

◮ RHP poles and zeros must be sufficiently separated

p

z
≥

{

6.5 for Ms, Mt < 2
14.4 for Ms, Mt < 1.4

◮ The product of a RHP pole and a time delay cannot be too
large

pT ≤
{

0.16 for Ms, Mt < 2
0.05 for Ms, Mt < 1.4.

To Read More

◮ Skogestad Postleithwaite Multivariable Feedback Control -
Analysis and Design Wiley 2005

◮ Åström, Limitations on Control System Performance.
European Journal of Control, (6:1) 2000 2–20. (ast00a)

◮ Gunter Stein, "Respect the unstable", reprint of GS’s Bode
lecture 1989 in IEEE Control Systems Magazine (aug,
2003).

◮ "Åström, Klein and Lennartsson, "Bicycle Dynamics and
Control", IEEE Control Systems Magazine, vol 25(4), pp
26–47, 2005.


