
Department of

AUTOMATIC CONTROL

Nonlinear Control and Servo Systems (FRT 075)

Exam  March 8, 2005 at 2 pm – 7 pm

Points and grades

All answers must include a clear motivation. The total number of points is 25.

The maximum number of points is specified for each subproblem. Most subprob-

lems can be solved independently of each other.

Preliminary grades:

3: 12− 16 points

4: 16.5− 20.5 points

5: 21− 25 points

Accepted aid

All course material, except for exercises and solutions to old exams, may be

used as well as standard mathematical tables and authorized “Formelsamling i

reglerteknik”/”Collection of Formulae”. Pocket calculator.

Results

The exam results will be posted within a week after the day of the exam on

the notice-board at the Department. Contact the lecturer Anders Robertsson for

checking your corrected exam.

Note!

In many cases the sub-problems can be solved independently of each other.

Good Luck!
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Figure 1 The phase portraits in Problem 1

0. Do you want an e-mail with your result? If so, please confirm this and write

your e-mail address where you want us to send it.

Solution

—

1.

a. Which phase portrait in Figure 1 belongs to what system? Briefly motivate

your answers (no extensive calculations needed).

(i) ẋ1 = −x2

ẋ2 = x2 − sin(x1)

(ii) ẋ1 = x2

ẋ2 = −x1 + (1− x
2
1)x2

(iii) ẋ1 = x2

ẋ2 = −x1 + x2x
5
1

(iv) ẋ1 = x2

ẋ2 = −x1 − x2

(2 p)

Solution

2



Nonlinear Control and Servo Systems, March 8, 2005

a. (i)-D, (ii)-C, (iii)-A, (iv)-B

2. Consider the system

ẋ1 = −x1 − x2 + si�n(−x1 − 2x2)

ẋ2 = x1

Find the sliding set and determine the sliding dynamics on/along the sliding
set. (Hint: Use equivalent control and state in which region ueq is valid!)

(2 p)

Solution

Rewriting the system as

ẋ1 = −x1 − x2 − u

ẋ2 = x1

u = −s�n(σ ) σ = −x1 − 2x2

The switch curve is σ = −x1 − 2x2 = 0. Calculation of ueq gives the sliding
set.

σ = −x1 − 2x2 = 0→ x1 = −2x2

σ̇ = −ẋ1 − 2ẋ2 = −x1 + x2 + ueq = 0→ ueq = x1 − x2 = −3x2

ueq ∈ [−1, 1] so can only satisfy ueq = −3x2 on the interval {x1 = −2x2, x2 ∈
[−1/3, 1/3]}

The sliding dynamics with the calculated ueq inserted in the system

ẋ1 = −x1 − x2 − (x1 − x2) = −2x1

ẋ2 = x1 = −2x2

Thus the system is stable along the sliding set.

3. Consider the design model for an anti-lock braking system in Figure 2.

In case of ABS control the quantities in the figure have the following phys-

ical interpretation:

• λ - tire slip,

• y - torque caused by the friction between the tire and the road,

• u - commanded braking torque.

The value of the friction torque y can not increase above a maximum value

as a function of the tire slip λ (maximum achieved at point B). By choosing
a constant value for the control signal u we can achieve one or two different

equilibrium points of the system in Figure 2.

How will the stability properties for the different equilibrium points A and

C differ? Motivate your answer. (1 p)
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Figure 2 (Left) Design model for an anti-lock braking system (ABS). (Right) Break
torque y as a function of the tire slip λ . Note that the system can have two equilibrium
points, represented by the points A and C in the rightmost figure.

Solution

The system consists of a time delay in series with a negative feedback sys-

tem. The time delay will not affect the stability as there is no feedback loop

around it so we can concentrate on the feedback loop. For some level of u

which balances y the difference will be zero and the integrator will keep

its value (equilibrium points either in A and C). However if we look at the
slopes of the friction curve we see that we have positive slope in the point

A and negative slope in point C. This means that for a small disturbance

from point A we will have in total negative feedback and we will come back

to A, while in the case of a small disturbance from C we will continue move

further away (unstable equilibrium point).

4. A nonlinear system is given below.

ẋ1 = −x
3
1 + x2 + u

ẋ2 = −x1 + ax
2
2x1

a. Find all equilibrium points to the nonlinear system if u = 0 and a = 1.
Determine their local stability properties. (2 p)

b. Let u = 0 and a = 0, prove that the origin is globally asymptotically stable
using the Lyapunov function candidate

V (x) =
1

2
x21 +

1

2
x22.

(2 p)

c. When a = 1 the uncontrolled system is not stable. Design a control law u =
f (x) such that the origin becomes stable (asymptotic stability not required).

(2 p)

Solution

a. All singular points are given by {ẋ1 = ẋ2 = 0}:

0 = x1(x
2
2 − 1) [ x

0
1 = 0 and x

0
2 = ±1
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0 = −x31 + x2 [ x
0
1 = ±1 and x

0
2 = 0[

x0 = {0, 0} and x0 = {1, 1} and x0 = {−1,−1}

Now let ẋ = f (x) and then

d

dt
(x − x0) (

� f

�x

∣

∣

∣

∣

x=x0
(x − x0)

A(x1, x2) =
� f

�x
=

[

−3x21 1

−1+ x22 2x2x1

]

eig A(0, 0) = ±i (no conclusion)

eig A(1, 1) = {−3, 2} (saddle point)

eig A(−1,−1) = {−3, 2} (saddle point)

Because the linearization around the origin gives eigenvalues on the imag-

inary axis no conclusion can be drawn.

b.

V̇ = x1 ẋ1 + x2 ẋ2 = x1(−x
3
1 + x2) + x2(−x1) = −x

4
1 ≤ 0

Because V̇ is only negative semi definite, we can only conclude that the

origin is stable. To prove asymptotic stability we use the Invariant Set The-

orem. The set E for which V̇ = 0 in this case is x1 = 0, but when x1 = 0
then ẋ1 = x2 ,= 0 unless x2 = 0. Therefore the origin is the largest invariant
set in E and all solutions will eventually end up there.

c.

V̇ = x1 ẋ1 + x2 ẋ2 = x1(−x
3
1 + x2 + u) + x2(−x1 + x

2
2x1) = −x

4
1 + ux1 + x

3
2x1

Choosing u = −x32 gives

V̇ = −x41 ≤ 0

and thus the system is stable.

5. A linear time-invariant system G(s) is feedback interconnected with the
nonlinear function h(y) and a static gain k, see Figure 3.

G(s) = 0.8
(s+ 2)(s+ 1.9)

s3 − 1

The Nyquist plot of G(s) can be seen in Figure 4. Find a k which makes
the system globally asymptotically stable for the nonlinearity in Figure 5.

(2 p)
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Figure 3 Block diagram in problem 5
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Figure 4 Nyquist plot in problem 5
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Figure 5 Nonlinearity in problem 5
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Figure 6 Circle and Nyquist plot in problem 5

Solution

By inspection of Figure 5 we conclude that the nonlinearity is contained

in the sector [0.5 , 1]. After multiplication with k the new sector becomes
[ k
2
, k].

The denominator can be written as s3 − 1 = (s − 1)(s2 + s + 1) and thus
we conclude that the system has one pole in the right half plane. For the

system to be stable the Nyquist plot of G(s)must encircle the disk D( k
2
, k )

once in the counter-clockwise direction.D( k
2
, k )means a circle on the real

axis between − 2
k
and − 1

k
. The circle is centered around − 3

2k
and has radius

1
2k
. Thus making k sufficiently large will be enough. For example k = 3 is

plotted in Figure 6.

6. Consider the nonlinear system

z̈+ z = ǫ(ż−
1

3
ż3), ǫ > 0

a. Show that the system can be separated into one linear and one nonlinear

part as in Figure 7. Determine the transfer function G(s). (2 p)

b. Calculate the describing function of f (y) = 1
3
y3.

Hint:
∫ 2π

0

sin(x)4dx =
3π

4

(1 p)

c. Estimate the frequency and amplitude of possible limit cycles. (Note that
your answer can be found independently of ǫ while in reality the value of ǫ

affects the oscillation). (2 p)
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Figure 7 Block diagram in problem 6

Solution

a.

z̈+ z− ǫż= −ǫ

1

3
ż3 = ǫu.

Take the Laplace transform on both sides

s2Z + Z − ǫsZ = ǫU

Z =
ǫ

s2 − ǫs+ 1
U

Let y= ż then u = −1
3
y3 and Y = sZ which gives

G(s) =
ǫs

s2 − ǫs+ 1

b. The function is odd [ a0 = a1 = 0.

b1 =
1

π

∫ 2π

0

f (A sin(φ)) sin(φ)dφ =
A3

3π

∫ 2π

0

sin(φ)4dφ =
A3

4

N(A) =
ia1 + b1
A

=
A2

4

c. Possible limit cycles occur when

G(iw) = −
1

N(A)
.

Because N(A) is real we want to calculate the points were Im(G(iw)) = 0.

G(iw) =
ǫiw

−w2 − iǫw+ 1
=

ǫiw(1−w2 + iǫw)

(1−w2)2 + ǫ
2w2

so

ImG(iw) =
ǫw(1−w2)

(1−w2)2 + ǫ
2w2

= 0

which gives w= 0,±1. The only valid solution is thus w= 1.

G(i1) = −1 = −
1

N(A)
= −

4

A2
[ A = ±2

So finally w = 1 and A = 2.
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7. Consider the nonlinear system

ẋ1 = x2 +α x1(β
2 − x21 − x

2
2)

ẋ2 = −x1 +α x2(β
2 − x21 − x

2
2)

where α and β are positive constants.

a. Show that x0(t) = [A sin(t) A cos(t)]
T is a solution if A = β > 0. (1 p)

b. Linearize the system around the periodic solution in a). (2 p)

Solution

a. Differentiate the solution and substitute into the system equations.

A cos(t) = A cos(t) +α A sin(t)(β 2 − A2 sin2(t) − A2 cos2(t))

= A cos(t) +α A sin(t)(β 2 − A2)

−A sin(t) = −A sin(t) +α A cos(t)(β 2 − A2 cos2(t) − A2 sin2(t))

= −A sin(t) +α A cos(t)(β 2 − A2)

and thus A = β .

b. Denote ẋ = f (x) and let

d

dt
(x(t) − x0(t)) (

� f

�x

∣

∣

∣

∣

x=x0(t)

(x(t) − x0(t))

A(x1, x2) =
� f

�x
=

[

α (β 2 − x21 − x
2
2) − 2α x

2
1 1− 2α x1x2

−1− 2α x1x2 α (β 2 − x21 − x
2
2) − 2α x

2
2

]

A(t) =

[

−2α β 2 sin2(t) 1− 2α β 2 sin(t) cos(t)

−1− 2α β 2 sin(t) cos(t) −2α β 2 cos2(t)

]
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8. Given the double integrator system with bounded control

ẋ1(t) = x2(t)

ẋ2(t) = u(t), u ∈ [−1, 1]
(1)

we have seen that the time optimal control is of “bang-bang" type control.

The task is now to show that this control can be written as

u(t) = −si�n{σ (x(t))}

a. Draw the phase plane diagram for the case u = 1, i.e., for the differential
equation

ẋ1(t) = x2(t)

ẋ2(t) = 1
(2)

Next, draw the phase plane diagram for the case u = −1, i.e., for the differ-
ential equation

ẋ1(t) = x2(t)

ẋ2(t) = −1
(3)

Give an expression for and mark the two different trajectories (for u = 1
and u = −1 respectively) which go through the origin x = 0. (1 p)

b. From the optimal control theory we know that the time optimal control in

this case switches sign at most once. Combine the phase plane diagrams

from (a) to sketch the control strategy which brings the state of the double
integrator to the origin by switching control at most once. (1 p)

c. Either use your results from (a)–(b) to show that the optimal control can
be written in feedback form

u(t) = −si�n{σ (x(t))}, σ (x) = x1 + si�n{x2}
x22
2

or

find the optimal control signal u as a function of time and µ by solving the
optimization problem using Pontryagin’s “Maximum/Minimum principle”.

(2 p)

Solution

a. Case 1 (u = +1):

x2(t) = t+ x2(0) [ x1(t) = t
2/2+ x2(0)t+ x1(0)

By eliminating time t from the expressions for x1 and x2 we get

x1 − x
2
2/2 = C1, where C1 = x1(0) − x2(0)

2/2

which describe the parabola as seen in the leftmost picture of Figure 8.
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Figure 8 (Left) Solution curves for u = +1. (Right) Solution curves for u = −1.

x1 ’ = x2                          

x2 ’ = − sign(x1 + sign(x2) x2
2
/2)
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Figure 9 (Left) Solution curves for u = +1. (Right) Solution curves for u = −1.

Case 2 (u = −1) :

x2(t) = −t+ x2(0) [ x1(t) = −t
2/2+ x2(0)t+ x1(0)

By eliminating time t from the expressions for x1 and x2 we get

x1 + x
2
2/2 = C2, where C2 = x1(0) + x2(0)

2/2

which describe the parabola as seen in the rightmost picture of Figure 8.

The combination of the parabola and in particular the parts of those two

which will have solution curves which “flows to the origin” are marked in

Figure 9.

b. Follow one parabola using maximum or minimum control signal until you

hit the switch line σ , switch to minimum/maximum control and then follow
that parabola to the origin.
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Figure 10 Combination of solution curves: Follow one parabola using maximum or min-

imum control signal until you hit the switch line σ , switch to minimum/maximum control
and then follow that parabola to the origin.

c. The optimal control strategy requires at most one switch. We have a switch

only when the initial condition is not on the “switch line”σ (x), see Figure 10.
To characterize the two areas from subproblem b we can see that we should

choose u = +1 when we are to the “left” of the switch curve σ (x) and u = −1
if we are to the “right” of it. The switch curve σ is a combination of the two
parabola which goes through the origin and is described by the equation

x1 + si�n(x2) ⋅ x22/2 = 0

Thus, the desired control law will be

u = −si�n(σ (x))

It is also possible to state it as a standard optimal control problem, and

solve for u;

minu

∫ T

0

1dt

subject to

ẋ1 = x2

ẋ2 = u

u ∈ [−1, 1]

x1(0) = x10, x2(0) = x20

x1(T) = 0, x2(T) = 0

which will give the same result but be more involved.
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