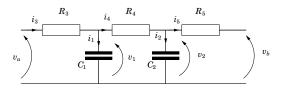


Principles and analogies: Electrics

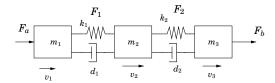
Example 2. An electrical system:



Potentials v_a , v_b , v_1 , and v_2 Currents i_1 , i_2 , i_3 , i_4 , and i_5

Principles and analogies: Mechanics

Exempel 4. A mechanical system:



External forces: F_a and F_b Velocities: v_1 , v_2 and v_3 Spring constants: k_1 and k_2 Damping constants: d_1 and d_2

Analogies (cont'd)

Intensity variations

$$C \cdot \frac{d}{dt}$$
(intensity) = flow

C "capacitance": hydraulic: $A/(\rho g)$ electrical: kapacitans heat: thermal capacity mechanical: inverse spring constant Balance equations!

(More complicated if the capacitance is not constant.)

More phenomena

Intensity variations

$$L \cdot \frac{d}{dt}$$
(flow) = intensity

L "inductance" hydraucs: $\rho l/A$ electrics: inductans heat: – mechanics: mass balance equations!

(more complicated if the inductance is not constant.)

Principles and analogies: Heat

Example 3. A thermal system (heat transfer through a wall):

T_a	Värmekap. C_1 T_1	<i>q</i> ₄	Värmekap. C_2 T_2	<i>q</i> ₅	T_b

Two elements with thermal capacities C_1 and C_2 separated by insulating layers. Heat flows: q_3 , q_4 and q_4 Temperatures: T_a , T_b , T_1 and T_2

Analogies

Analogies: hydraulic - electric - thermal - mechanical Two types of variables:

A. Flow Variables

- volume flow
- power flow
- heat flow
- speed

B. Intensity variables

- pressure
- voltage
- temperature
- force

For both of them addition rules hold.

Analogies (cont'd)

Losses

flow = ϕ (intensity) intensity = ϕ (flow)

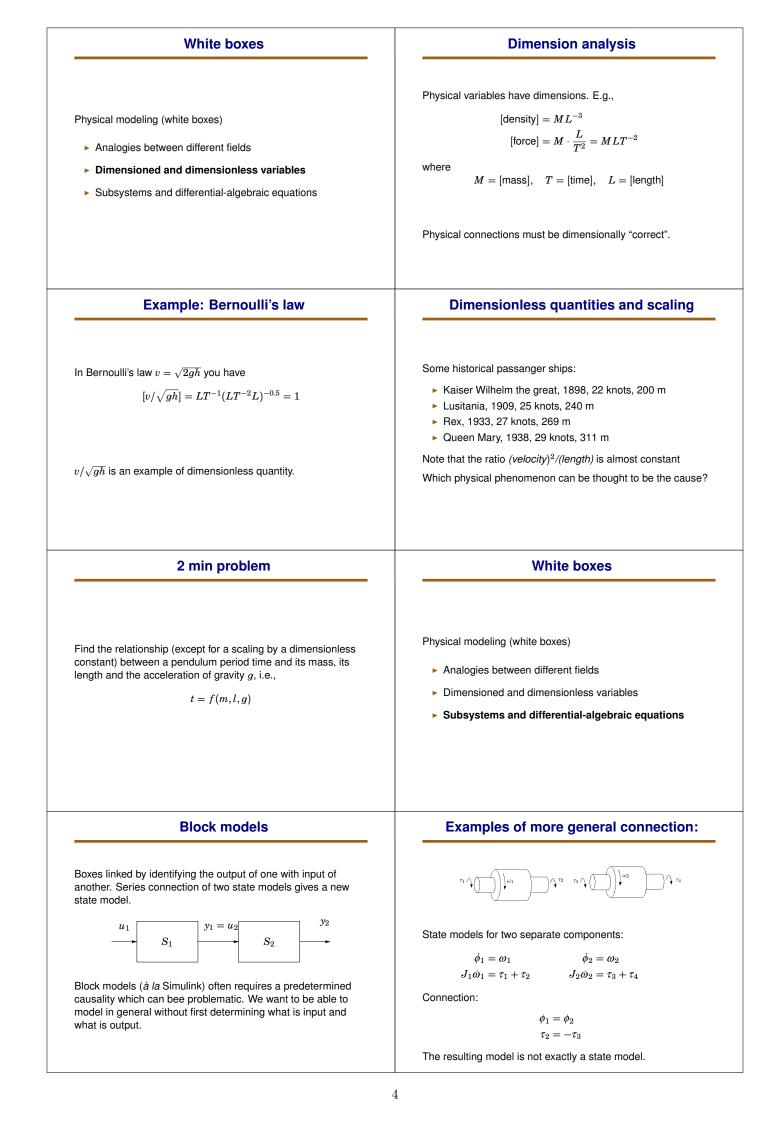
Hydraulic: flow resistance Electrics: resistance Heat: thermal conductivity Mechanics: friction

Often linear relationship in the electrical case - nonlinearly in the other (may be approximated by linear for small changes of variables)

Energy flows

Can you make a general modeling theory based on flow and intensity variables? Note the following.

pressure · flow = power voltage difference · current = power force · velocity = power torque · angular velocity = power temperature · heat flow = power · temperature



Linear differential-algebraic equations (DAE)

$$E\dot{z} = Fz + Gu$$

If E were non-singular, one could write

$$\dot{z} = E^{-1}Fz + E^{-1}Gu$$

which is a valid state model. If E is singular, variables have to be eliminated to get a state equation. Using a DAE solver is often better, since elimination can destroy sparsity.

Example:

1	0	0	0			Γ0	1	0	0]		Γ0	0	0	0]	
0	J_1	0	0	$\left[\dot{\phi}_1\right]$	1	0	0	0	0	$\begin{bmatrix} \phi_1 \\ \omega_1 \\ \phi_2 \\ \omega_2 \end{bmatrix}$	1	1	0	0	$\lceil \tau_1 \rceil$
0	0	1	0	$\dot{\omega}_1$		0	0	0	1	ω_1	0	0	0	0	τ_2
0	0	0	J_2	ϕ_2	=	0	0	0	0	$ \phi_2 $	0	0	1	1	$ \tau_3 $
0	0	0	0	$\dot{\omega}_2$		0	0	0	0	ω_2	0	1	$^{-1}$	0	$ \tau_4 $
0	0	0	0			1	0	$^{-1}$	0		0	0	0	0	

Example: Pendulum

A pendulum with length L and position coordinates (x, y) moves according to the equations

$$\dot{x} = u \qquad \dot{y} = v \\ \dot{u} = \lambda x \qquad \dot{v} = \lambda v - q$$

 $0 = \dot{x}x + \dot{y}y = ux + vy$

 $L^2 = x^2 + y^2$

Differentiating a second time gives

$$0 = \dot{u}x + u\dot{x} + \dot{v}y + v\dot{y}$$
$$= \lambda x^{2} + u^{2} + (\lambda y - g)y + v^{2}$$
$$= \lambda L^{2} - gy + u^{2} + v^{2}$$

and a third time

$$0 = \dot{\lambda}L^2 - 3gv$$

Finally, we have derivative expressions for all variables!

Black Boxes

Statistical modeling from data (static black boxes)

- Singular Value Decomposition (SVD)
- Principal Component Analysis (Factor Analysis)
- Neural Networks / Machine learning
- Dynamic experiments (dynamic black boxes)
 - Step response
 - Frequency response
 - Correlation analysis
- Gray boxes
 - Prediction error methods
 - Differential-Algebraic Equations revisited

Example of SVD

$$M = U \begin{bmatrix} \Sigma & 0 \\ 0 & 0 \end{bmatrix} V^{*}$$

$$\begin{bmatrix} 1 & 1 \\ 1 & 1 \end{bmatrix} = \underbrace{\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & -1 \\ 1 & 1 \end{bmatrix}}_{U} \begin{bmatrix} 2 & 0 \\ 0 & 0 \end{bmatrix} \underbrace{\begin{bmatrix} 1 & 1 \\ -1 & 1 \end{bmatrix}}_{V^{*}}$$

What does it mean if a singular value is zero? What does it mean if it is near zero?

Nonlinear differential-algebraic equations (DAE)

Differential-algebraic equations, DAE

$$F(\dot{z}, z, u) = 0, \quad y = H(z, u)$$

u: input, y: output, z: "internal variable"

Special case: state model

$$\dot{x} = f(x, u), \quad y = h(x, u)$$

u: input, y: output, x: state

Mathematical modelling — Why and How?

Why modelling?

- Natural sciences: Models for analysis (understanding)
- Engineering sciences: Models for synthesis (design)
- Specification: Model of a good technical solution
- White boxes: Physical modeling Model derived from fundamental physical laws
- Black boxes: Statistical methods and machine learning Model derived from measurement data
 - Singular Value Decomposition (SVD)
 - Principal Component Analysis (Factor Analysis)
 - Neural Networks / Machine learning
 - System Identification / Time Series Analysis
- Gray boxes: Combination of the two

Singular Value Decomposition (SVD)

A matrix M can always be factorized

$$M = U egin{bmatrix} \Sigma & 0 \ 0 & 0 \end{bmatrix} V^*$$

with Σ diagonal and invertible and U, V unitary:

$$\Sigma = \begin{bmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{bmatrix} \qquad \qquad U^*U = I \qquad V^*V = I$$

Diagonal elements of Σ are called singular values of M and correspond to the square roots of the eigenvalues of M^*M . Computation of SVD is *very numerically stable*.

Good children can have many names

Collect all the data into a large matrix. Then compute the SVD:

$$\begin{bmatrix} y_1(1) & y_1(2) & \dots & y_1(N) \\ y_2(1) & y_2(2) & \dots & y_2(N) \\ \vdots & & & \\ y_p(1) & y_p(2) & \dots & y_p(N) \end{bmatrix} = U \underbrace{\begin{bmatrix} \sigma & 0 \\ & \ddots \\ 0 & & \sigma_p \end{bmatrix}}_{\Sigma} V^*$$

Singular values σ_i in decreasing order on the diagonal of Σ . The first columns of *U* give the direction of the main data area.

Principal Component Analysis: By replacing the small singular values σ_i with zeros focuses on the essential.

The name 'factor analysis' is sometimes used as a synonymous, since large singular values σ_i highlight important factors.

Principal Component Analysis (PCA)	Example: Image processing								
Data from a bi-dimensional Gaussian distribution centered in $(1,3)$:									
	What does this picture represent?								
	M =								
a start and a start and a start	1 0 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0								
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
	1 1 0 0 1 0 1 0								
Principal component (0.878, 0.478) has standard deviation 3. Next component has standard deviation 1.									
[Kālla: Wikipedia]									
Example: Image processing with SVD	Example: Image processing with SVD								
>> [U,S,V]=svd(M)	<pre>round(U*S1*V') =</pre>								
υ =									
-0.4747 0.8662 0.0000 -0.1559 0.0000	1 0 0 0 1 0 0 1 0								
-0.4291 -0.1371 -0.0000 0.5450 -0.7071 -0.4508 -0.3256 -0.7071 -0.4368 -0.0000	1 0 0 0 1 0 1 0 1 0 0 0 1 0 1 0								
-0.4291 -0.1371 -0.0000 0.5450 0.7071 -0.4508 -0.3256 0.7071 -0.4368 0.0000	1 0 0 0 1 0 1 0								
S =	round(U*S2*V') =								
4.5638 0 0 0 0 0 0 0 0 0	$\begin{array}{cccccccccccccccccccccccccccccccccccc$								
0 1.3141 0 0 0 0 0 0 0 0 0 1.0000 0 0 0 0 0 0 0	1 0 0 0 1 0 0 1 0								
0 0 0 0.6670 0 0 0 0 0 0 0 0 0 0.0000 0 0 0 0	1 0 0 0 1 0 1 0 1 0 0 0 1 0 0 1 0								
Example: Image processing	Example: Correlations genes-proteines								
H + + + + + + + + + + + + + + + + + + +									
	4 1								
rat rath rath									
12 50 120									
The original image has 897-by-598 pixels. Tacking red, green	Cancer research: microarrays (glass) with human genes are								
and blue vertically gives a 2691-by-598 matrix. Truncating all but 12 singular values gives the left picture. 120 gives the right.	exposed to healthy cells, then to sick ones. Make a SVD of the data to find out which genes are important!								
Black Boxes	Tomorrow								
 Statistical modeling from data (static black boxes) 									
 Singular Value Decomposition (SVD) 	More on black and grey models								
 Principal Component Analysis (Factor Analysis) Neural Naturates / Machine Learning 									
 Neural Networks / Machine learning Dynamic experiments (dynamic black boxes) 	 Registered students will get a project 								
 Step response Frequency response 	Karl Johan Åström will lecture on bicycle modelling!								

- Frequency response
 Correlation analysis
- Gray boxes

 - Prediction error methods
 Differential-Algebraic Equations revisited

Karl Johan Åström will lecture on bicycle modelling!