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◮ 4.5 högskolepoäng ; betyg U/G
◮ 4 h lectures
◮ 100 h project

Project

◮ Project supervision from
◮ Mathematics, Mathematical Statistics, Automatic Control.

◮ Project plan. An A4-paper prepared after consulting the
supervisor. Send to course responsible by January 31.
Use email with subject line “FRT095”.

◮ Written report

◮ Oral presentation (shared among all group members)

◮ Opposition (all team members together)
Written opposition report

◮ 4 persons per project (possibly less)

Written report

See the website instructions:

◮ Cover sheet
◮ Summary
◮ Table of Contents
◮ Main Text

◮ Presentation of problem: What is the purpose of the model?
◮ Summary of used literature
◮ Theory/Method
◮ Implementation
◮ Results
◮ Evaluation/discussion: Does the model suit its purpose?
◮ Reference list

◮ Description of how the work is distributed within the group
◮ Presentation of the course theory part

Mathematical modelling — Why and How?

◮ Why modelling?
◮ Natural sciences: Models for analysis (understanding)
◮ Engineering sciences: Models for synthesis (design)
◮ Specification: Model of a good technical solution

◮ White boxes: Physical modeling
Model derived from fundamental physical laws

◮ Black boxes: Statistical methods and machine learning
Model derived from measurement data

◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)
◮ Neural Networks / Machine learning
◮ System Identification / Time Series Analysis

◮ Gray boxes: Combination of the two

All Three Modelling Phases Must be Described

1. Problem structure
◮ Formulate purpose, requirements for accuracy
◮ Break up into subsystems — What is important?

2. Basic equations
◮ Write down the relevant physical laws
◮ Collect experimental data
◮ Test hypotheses
◮ Validate the model against fresh data

3. Model with desired features is formed
◮ Put the model on suitable form.

(Computer simulation or pedagogical insight? )
◮ Document and illustrate the model
◮ Evaluate the model: Does it meet its purpose?

Implementation

Experiment Synthesis

Analysis

Matematical model

Idea/Purpose

specification
and requirement  

Engineering Ethics 1

◮ Relevant for the Pi-program?

◮ Ethical linear algebra?

◮ Ethical mathematical modelling?

1Thanks to Maria Henningsson Pi-02 for suggesting the next few slides.
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“Our calculations show that...”

◮ What is behind the numbers?

◮ What assumptions are made?

◮ What limitations are there?

"Essentially, all models are wrong, but some are useful."
- George E. P. Box.

Knowledge Gives You Power and Responsibility

◮ Your expert role will give you an advantage

◮ What assumptions are made?

◮ What limitations are there?

Example1: The CitiCorp Building Example 2: The Parental Leave Insurance

What percentage of your income do you get?

Example 3: Mortage Securities Mathematical modelling — Why and How?

◮ Why modelling?
◮ Natural sciences: Models for analysis (understanding)
◮ Engineering sciences: Models for synthesis (design)
◮ Specification: Model of a good technical solution

◮ White boxes: Physical modeling
Model derived from fundamental physical laws

◮ Black boxes: Statistical methods and machine learning
Model derived from measurement data

◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)
◮ Neural Networks / Machine learning
◮ System Identification / Time Series Analysis

◮ Gray boxes: Combination of the two

White boxes

Physical modeling (white boxes)

◮ Analogies between different fields

◮ Dimensioned and dimensionless variables

◮ Subsystems and differential-algebraic equations

Principles and analogies: Hydraulics

Example 1. A hydraulic system:

pa p1 p2 pb

Q1 Q2

Q3 Q4 Q5

Incompressible fluid. Pressures: pa, p1, p2, and p3.
Volume flows: Q1, Q2, Q3, Q4, and Q5.
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Principles and analogies: Electrics

Example 2. An electrical system:

va v1
v2

vb

i1
i2

i3
i4 i5

R3 R4 R5

C1 C2

Potentials va , vb , v1, and v2
Currents i1 , i2, i3, i4, and i5

Principles and analogies: Heat

Example 3. A thermal system
(heat transfer through a wall):

Värmekap. Värmekap.

Ta

T1 T2

Tb
q3

q4 q5
C1 C2

Two elements with thermal capacities C1 and C2 separated by
insulating layers. Heat flows: q3 , q4 and q4
Temperatures: Ta , Tb , T1 and T2

Principles and analogies: Mechanics

Exempel 4. A mechanical system:

Fa

F1 F2

Fb

v1
v2 v3

k1
k2

d1
d2

m1 m2 m3

External forces: Fa and Fb
Velocities: v1, v2 and v3
Spring constants: k1 and k2
Damping constants: d1 and d2

Analogies

Analogies: hydraulic - electric - thermal - mechanical
Two types of variables:

A. Flow Variables

◮ volume flow
◮ power flow
◮ heat flow
◮ speed

B. Intensity variables

◮ pressure
◮ voltage
◮ temperature
◮ force

For both of them addition rules hold.

Analogies (cont’d)

Intensity variations

C ⋅
d
dt
(intensity) = flow

C "capacitance":
hydraulic: A/(ρ�)
electrical: kapacitans
heat: thermal capacity
mechanical: inverse spring constant
Balance equations!

(More complicated if the capacitance is not constant.)

Analogies (cont’d)

Losses
flow = φ(intensity)
intensity = ϕ (flow)

Hydraulic: flow resistance
Electrics: resistance
Heat: thermal conductivity
Mechanics: friction

Often linear relationship in the electrical case - nonlinearly in
the other (may be approximated by linear for small changes of
variables)

More phenomena

Intensity variations

L ⋅
d
dt
(flow) = intensity

L "inductance"
hydraucs: ρl/A
electrics: inductans
heat: –
mechanics: mass
balance equations!

(more complicated if the inductance is not constant.)

Energy flows

Can you make a general modeling theory based on flow and
intensity variables? Note the following.

pressure ⋅ flow = power
voltage difference ⋅ current = power

force ⋅ velocity = power
torque ⋅ angular velocity = power
temperature ⋅ heat flow = power ⋅ temperature
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White boxes

Physical modeling (white boxes)

◮ Analogies between different fields

◮ Dimensioned and dimensionless variables

◮ Subsystems and differential-algebraic equations

Dimension analysis

Physical variables have dimensions. E.g.,

[density] = M L−3

[force] = M ⋅
L

T2 = M LT−2

where
M = [mass], T = [time], L = [length]

Physical connections must be dimensionally “correct”.

Example: Bernoulli’s law

In Bernoulli’s law v =
√

2�h you have

[v/
√
�h] = LT−1(LT−2 L)−0.5 = 1

v/
√
�h is an example of dimensionless quantity.

Dimensionless quantities and scaling

Some historical passanger ships:

◮ Kaiser Wilhelm the great, 1898, 22 knots, 200 m
◮ Lusitania, 1909, 25 knots, 240 m
◮ Rex, 1933, 27 knots, 269 m
◮ Queen Mary, 1938, 29 knots, 311 m

Note that the ratio (velocity)2/(length) is almost constant

Which physical phenomenon can be thought to be the cause?

2 min problem

Find the relationship (except for a scaling by a dimensionless
constant) between a pendulum period time and its mass, its
length and the acceleration of gravity �, i.e.,

t = f (m, l,�)

White boxes

Physical modeling (white boxes)

◮ Analogies between different fields

◮ Dimensioned and dimensionless variables

◮ Subsystems and differential-algebraic equations

Block models

Boxes linked by identifying the output of one with input of
another. Series connection of two state models gives a new
state model.

u1 y1 = u2
y2

S1 S2

Block models (à la Simulink) often requires a predetermined
causality which can bee problematic. We want to be able to
model in general without first determining what is input and
what is output.

Examples of more general connection:

State models for two separate components:

φ̇1 = ω 1 φ̇2 = ω 2

J1ω̇ 1 = τ1 + τ2 J2ω̇ 2 = τ3 + τ4

Connection:

φ1 = φ2

τ2 = −τ3

The resulting model is not exactly a state model.
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Linear differential-algebraic equations (DAE)

Eż = Fz+ Gu

If E were non-singular, one could write

ż = E−1 Fz+ E−1Gu

which is a valid state model. If E is singular, variables have to
be eliminated to get a state equation. Using a DAE solver is
often better, since elimination can destroy sparsity.

Example:



1 0 0 0
0 J1 0 0
0 0 1 0
0 0 0 J2
0 0 0 0
0 0 0 0







φ̇1
ω̇ 1
φ̇2
ω̇ 2


 =




0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0
1 0 −1 0







φ1
ω 1
φ2
ω 2







0 0 0 0
1 1 0 0
0 0 0 0
0 0 1 1
0 1 −1 0
0 0 0 0







τ1
τ2
τ3
τ4




Nonlinear differential-algebraic equations (DAE)

Differential-algebraic equations, DAE

F(ż, z, u) = 0, y= H(z, u)

u: input, y: output, z: "internal variable"

Special case: state model

ẋ = f (x, u), y= h(x, u)

u: input, y: output, x: state

Example: Pendulum
A pendulum with length L and position coordinates (x, y)
moves according to the equations

ẋ = u ẏ= v

u̇ = λ x v̇ = λ y− � L2 = x2 + y2

Differentiating the fifth equation gives

0 = ẋx + ẏy= ux + vy

Differentiating a second time gives

0 = u̇x + uẋ + v̇y+ vẏ

= λ x2 + u2 + (λ y− �)y+ v2

= λ L2 − �y+ u2 + v2

and a third time

0 = λ̇ L2 − 3�v

Finally, we have derivative expressions for all variables!

Mathematical modelling — Why and How?

◮ Why modelling?
◮ Natural sciences: Models for analysis (understanding)
◮ Engineering sciences: Models for synthesis (design)
◮ Specification: Model of a good technical solution

◮ White boxes: Physical modeling
Model derived from fundamental physical laws

◮ Black boxes: Statistical methods and machine learning
Model derived from measurement data

◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)
◮ Neural Networks / Machine learning
◮ System Identification / Time Series Analysis

◮ Gray boxes: Combination of the two

Black Boxes

◮ Statistical modeling from data (static black boxes)
◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)

◮ Neural Networks / Machine learning
◮ Dynamic experiments (dynamic black boxes)

◮ Step response
◮ Frequency response
◮ Correlation analysis

◮ Gray boxes
◮ Prediction error methods
◮ Differential-Algebraic Equations revisited

Singular Value Decomposition (SVD)

A matrix M can always be factorized

M = U
[

Σ 0
0 0

]
V ∗

with Σ diagonal and invertible and U , V unitary:

Σ =




σ 1
. . .

σ n


 U∗U = I V ∗V = I

Diagonal elements of Σ are called singular values of M and
correspond to the square roots of the eigenvalues of M∗M .

Computation of SVD is very numerically stable.

Example of SVD

M = U
[

Σ 0
0 0

]
V ∗

[
1 1
1 1

]
= 1√

2

[
1 −1
1 1

]

︸ ︷︷ ︸
U

[
2 0
0 0

] [
1 1
−1 1

]
1√
2︸ ︷︷ ︸

V ∗

What does it mean if a singular value is zero?

What does it mean if it is near zero?

Good children can have many names

Collect all the data into a large matrix. Then compute the SVD:



y1(1) y1(2) . . . y1(N)
y2(1) y2(2) . . . y2(N)

...
yp(1) yp(2) . . . yp(N)


 = U




σ 0
. . .

0 σ p




︸ ︷︷ ︸
Σ

V ∗

Singular values σ i in decreasing order on the diagonal of Σ.
The first columns of U give the direction of the main data area.

Principal Component Analysis: By replacing the small
singular values σ i with zeros focuses on the essential.

The name ‘factor analysis’ is sometimes used as a
synonymous, since large singular values σ i highlight important
factors.
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Principal Component Analysis (PCA)
Data from a bi-dimensional Gaussian distribution centered in
(1, 3):

Principal component (0.878, 0.478) has standard deviation 3.

Next component has standard deviation 1.
[Källa: Wikipedia]

Example: Image processing

What does this picture represent?

M =

1 0 0 1 1 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 1 1
1 0 0 0 1 0 0 1 0 1
1 1 0 0 1 0 0 1 0 1

Example: Image processing with SVD

>> [U,S,V]=svd(M)

U =

-0.4747 0.8662 0.0000 -0.1559 0.0000
-0.4291 -0.1371 -0.0000 0.5450 -0.7071
-0.4508 -0.3256 -0.7071 -0.4368 -0.0000
-0.4291 -0.1371 -0.0000 0.5450 0.7071
-0.4508 -0.3256 0.7071 -0.4368 0.0000

S =

4.5638 0 0 0 0 0 0 0 0 0
0 1.3141 0 0 0 0 0 0 0 0
0 0 1.0000 0 0 0 0 0 0 0
0 0 0 0.6670 0 0 0 0 0 0
0 0 0 0 0.0000 0 0 0 0 0

Example: Image processing with SVD

round(U*S1*V’) =

1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1

round(U*S2*V’) =

1 0 0 1 1 1 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1
1 0 0 0 1 0 0 1 0 1

Example: Image processing

The original image has 897-by-598 pixels. Tacking red, green
and blue vertically gives a 2691-by-598 matrix. Truncating all
but 12 singular values gives the left picture. 120 gives the right.

Example: Correlations genes-proteines

Cancer research: microarrays (glass) with human genes are
exposed to healthy cells, then to sick ones. Make a SVD of the
data to find out which genes are important!

Black Boxes

◮ Statistical modeling from data (static black boxes)
◮ Singular Value Decomposition (SVD)
◮ Principal Component Analysis (Factor Analysis)

◮ Neural Networks / Machine learning
◮ Dynamic experiments (dynamic black boxes)

◮ Step response
◮ Frequency response
◮ Correlation analysis

◮ Gray boxes
◮ Prediction error methods
◮ Differential-Algebraic Equations revisited

Tomorrow

◮ More on black and grey models

◮ Registered students will get a project

◮ Karl Johan Åström will lecture on bicycle modelling!
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