
Institutionen för

REGLERTEKNIK

Automatic Control

Exam December 16, 2013, 8.0013.00

Points and grading

Solutions and answers to all problems should be clearly motivated. The exam

consists of 25 points. The points on different problems are clearly marked.

Grade limits:

3: 12 points

4: 17 points

5: 22 points

Allowed Aids

Mathematical tables, the ”collection of formulae” and (not pre-programmed) cal-
culators. The book is not allowed.

Exam Results

Will be put in Ladok by January 3 2014. See also the course home page for more

information.

Good luck and Happy Holidays!
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Solutions to exam in Automatic Control 2013-Dec-16

1. Consider the system

ẋ =








−5 0

1 3








x +









1

0








u

y =


 0 1



 x.

a. Determine the transfer function G(s). (2 p)

b. Calculate the poles of the system. Is the system unstable, (marginally)
stable or asymptotically stable? (1 p)

Solution

a. The transfer function from u to y is given by G(s) = C(sI − A)−1B, ie

G(s) =


 0 1













s+ 5 0

−1 s− 3









−1






1

0








= 1

(s+ 5)(s− 3) .

b. The poles to are given by the roots of the denominator polynomial (s+5)(s−
3), ie by s = −5 and s = 3. Since one pole is in the right half plane the
system is unstable.

2. The relation between input u and output y for a system is given by (2 p)

y(t) = u(t− 3).
Calculate the gain and phase for the transfer function from u to y and sketch

the Bode diagram for the interval ω ∈ [0.1, 10]. Give the phase for ω = 0.1
and ω = 10 expressed in degrees.

Solution The transfer function for a time delay is G(s) = e−sL in thsi case L = 3.
The Bode diagram is given in the collection of formulae. The amplitude is

pG(iω )p = 1 for all frequencies and the phase is given by argG(iω ) = −3ω
radians = −180 ⋅3ω/π grader. For ω = 0.1 the phase is fasen −54/π ( −17
degrees, ad for ω = 1 it is ( −1720 degrees.

3. A basic PID-controller is given by the control law

u(t) = K
(

e(t) + 1
Ti

∫ t

0

e(τ )dτ + Td
de(t)
dt

)

,

where e(t) = r(t) − y(t) is the difference between reference value r(t) and
measurement signal y(t).

a. Show that the controller transfer function is (1 p)

GR(s) = K
(

1+ 1

sTi
+ sTd

)

.
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b. In many practical implementations of a PID-controller the following slightly

modified control law is used

u(t) = K
(

ep(t) +
1

Ti

∫ t

0

e(τ )dτ + Td
ded(t)
dt

)

,

where ep(t) = br(t) − y(t) with constant b ∈ [0, 1], and ed(t) = −y(t). What
advantages are there with this variant of PID-controller? (1 p)

Solution

a. Follows since the Laplace transform of
∫ t

0
e is

E(s)
s
and of de

dt
is sE(s).

b. Both modificatins can lead to better behavior for changes in the reference

signal. By adjusting the factor b one can influence the speed for responses

to changes in reference value, which then need not be the same as the

speed when compensating for an output disturbance. One can for instance

sometimes avoid overshoot in the response to step changes in the reference.

By not derivating the reference signal one can also avoid large control jumps

when the reference is changed rapidly.

4. Describe, preferably by a practical example, the phenomenon of windup

during PID control. Also describe a remedy. (2 p)

Solution See the book.
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5. Consider the following nonlinear differential equations

ẋ1 = −x1 + u2

ẋ2 = −x1 +
√
x2.

a. Assume u0 = 1 and find the stationary points of the system. (0.5 p)

b. Linearize the system around the stationary point you found in a. (1.5 p)

Solution

a. Stationary points are determined by setting ẋ1 = ẋ2 = 0, which gives

0 = −x01 + 12

0 = −x01 +
√

x02,

from which we get the stationary point (u0, x01, x02) = (1, 1, 1).

b. Calculation of partial derivatives of the two equations (denoted f1 and f2)
gives

� f1
�x1

= −1, � f1
�x2

= 0, � f1
�u = 2u,

� f2
�x1

= −1, � f2
�x2

= 1

2
√
x2
,

� f2
�u = 0

Putting in the stationary point (u0, x01, x02) = (1, 1, 1) gives

� f1
�x1

(1, 1, 1) = −1, � f1
�x2

(1, 1, 1) = 0, � f1
�u (1, 1, 1) = 2,

� f2
�x1

(1, 1, 1) = −1, � f2
�x2

(1, 1, 1) = 0.5, � f2
�u (1, 1, 1) = 0

and if we introduce new variables

∆x = x − x0

∆u = u− u0

we get the linearized system

∆ ẋ =
[−1 0

−1 0.5

]

∆x +
[

2

0

]

∆u.

6. Figure 1 shows input u(t) = sin(ω t) and output y(t) for the system

G(s) = a

s+ a .

Determine the parameters ω and a. (2 p)
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Figur 1 Input and output in Problem 6

Solution The input has amplitude 1 and is therefore the curve with largest

amplitude. From the figure we see that period time is T = 4 which gives
ω = 2π /T = π /2. The output after transients have decayed is given by

y(t) = pG(iω )p sin(ω t+ argG(iω )).

From the figure we see that pG(iω )p ( 0.7 and since the zero crossing are
delayed by 0.5 time units, the phase is argG(iω ) = −0.5/T ⋅ 2π = −π /4.
Comparing with formulas for first order systems : pG(iω )p = a√

ω 2+a2 or

alternatively argG(iω ) = −arctan(ω/a) we see that a = ω . Answer: ω =
a = π /2.

7. The height control system for Sant-Claus sleigh is given by the equations

ẋ =








−1 1

0 −3








x +









1

0








u

y=


 1 0


 x

with u = −


 2 2



 x + 3r.

a. Find the poles of the closed loop systems. (2 p)

b. Santa-Claus’ elphes have worked hard with trying to find a controller pla-

cing the poles in s = −10 but they have failed. Can you explain why? (1 p)

c. Santa can not measure both x1 and x2, only the signal y, he therefore would

like a Kalman filter. Design such, so that the Kalman filter poles become

s = −8. (2 p)

Solution

a. The poles are the eigenvalues of

A− BL =








−1 1

0 −3








−









1

0











 2 2



 =








−3 −1
0 −3
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Since the matrix is triangular, the eigenvalues are given by the diagonal

elements, ie there are two poles at s = −3.

b. The system is uncontrollable, which can be seen by calculating the control-

lability matrix

W =


 B AB


 =








1 −1
0 0









which is not invertible. (State x2 is uncontrollable.)

c. An estimator is given by

˙̂x = Ax̂ + Bu+ K (y− Cx̂).

The characteristic polynomial for the Kalman filter is given by

det(sI−A+KC) =
∣

∣

∣

∣









s+ 1+ k1 −1
k2 s+ 3









∣

∣

∣

∣

= (s+1+k1)(s+3)+k2 = (s+10)2.

Identification of coefficients give k1 = 16, k2 = 49.

8. A process is given by Gp(s) = 1
s+1 and is controlled by a PI-controller given

by GPI(s) = 1+ 2
s
.

a. When the reference is a ramp r(t) = at one gets a stationary error, deter-
mine the size of this error. (2 p)

b. Introduce then a compensation link GK (s) that decreases the stationary
ramp error a factor 10 without harming the system stability noticably (6
graders degrees smaller phase margin is acceptable). The loop transfer fun-
ction is hence now G0(s) = Gp(s)GPI(s)GK (s). (2 p)

Solution

a. We get

sE(s) = s

1+ Gp(s)GPI(s)
R(s) = s

1+ 1
s+1(1+ 2

s
)
a

s2
= a(s+ 1)
s(s+ 1) + s+ 2.

Stationary error is given by lims→0 sE(s) since the poles of sE(s) are in the
left half plane (the polynomial s(s+1)+ s+2 is of degree 2 and has positive
coefficients) so the final value theorem can be used and gives

lim
t→∞
e(t) = lim

s→0
sE(s) = a

2
.

b. We introduce a lag compensator GK (s) = s+a
s+a/M . Since the initial loop has

integral actoin, the stationary error decreases a factor M , we therefore put

M = 10. To use the rule of thumb a = 0.1ω c we must determine the cut off
frequency ω c given by pGp(iω c)GPI(iω c)p = 1. We get

1 =
∣

∣

∣

∣

1

iω c + 1
iω c + 2
iω c

∣

∣

∣

∣

= (ω 2c + 4)1/2
(ω 2c + 1)1/2ω c

which gives the equation ω 2c(ω 2c + 1) = ω 2c + 4, from which ω c =
√
2. We

hence choose a = 0.1 ⋅
√
2 ( 0.14.
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9. An atomic force microscope controlled by an I-controller is described by the

loop transfer function

G0(s) = GR(s)Gp(s) =
ki

s

ω 20
s2 + 2ω 0ζ s+ω 20

whose Nyquist curve and Bode diagram is shown beow forω 0 = 1,ζ = 0.005
for two different values of ki.
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a. Show that the intersection between the Nyquist curve and the negative real

axis is given (when ki > 0) by G0(iω 0) = − ki
2ζ ω0

. (1 p)

b. Find ki giving the amplitude margin Am = 2. (You can use the information
in problem a.) (1 p)

c. Assume ω 0 = 1,ζ = 0.005 as in the figures. What phase margin is obtained
for a ki giving amplitude margin Am = 2? (Reading in diagram is ok.)

(1 p)

Solution

a. If we use s = iω 0 we see that

G(iω 0) =
ki

iω 0
⋅

ω 20
−ω 20 + 2iω 20ζ +ω 20

= − ki

2ζ ω 0

which is hence on the negative real axis. It is easy to see that there is no

other intersectin since the phase decreases monotonously from -90 to -270

degrees.

7



b. We have − 1
Am
= − ki

2ζ ω0
which gives ki = ζ ω 0 when Am = 2.

c. The left Nyquist curve has amplitude margin 2. From the figure we see

that the phase maring is approximately 90 degrees.
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