
Lecture 5

◮ The H∞ Optimization Problem
◮ Linear Quadratic Games
◮ Algebraic Riccati Equations
◮ State Space Solution to H∞ Optimization

The H∞ Optimization Problem
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K

✲ ✲

✛

✲

w z

u y
P =


P11 P12

P21 P22




Tzw = F l(P, K )

Optimal control:
min

K−stab
qTzwq∞

Suboptimal control: Given γ find an internally stabilizing
controller K such that

qTzwq∞ < γ .

The optimal control problem is solved by iterating γ in the
suboptimal problem.

H∞ Optimization in Frequency Domain

A good exposition can be found in the book [Francis, 1987].

The Youla parameterization of all internally stabilizing
controllers gives an affine dependence of Tzw on the Youla
parameter Q ∈ RH∞

Tzw = T1 − T2QT3, Tk ∈ RH∞

Thus the H∞ optimization problem becomes

min
Q∈RH∞

qT1 − T2QT3q∞

The optimization in Q is convex, but infinite-dimensional

H∞ Optimization in Frequency Domain

In a special case, the H∞ optimization problem is equivalent to

min
F∈RH∞

qR − Fq∞ = dist(R, RH∞)

where R is unstable.

This problem of approximating an L∞ function by an H∞

function is a classical problem from the beginning of the 20th
century (Markov, Caratheodory, Fejer, Nevanlinna, Pick,
Sarason and many others). Nehari solved it in 1957.

State Space Solution: Recall LQ Control

If P satisfies the Riccati equation
AT P+ PA+ Q − PB BT P = 0, then every solution to
ẋ = Ax + Bu with x(T) = 0 satisfies

∫ T

0
[xT Qx + uTu]dt

=

∫ T

0
pu+ BT Pxp2dt− 2

∫ T

0
(Ax + Bu)T Pxdt

=

∫ T

0
pu+ BT Pxp2dt− 2

∫ T

0
ẋT Pxdt

=

∫ T

0
pu+ BT Pxp2dt−

∫ T

0

d
dt
[xT Px]dt

=

∫ T

0
pu+ BT Pxp2dt+ x(0)T Px(0)

with the minimizing control law u = −BT Px.

A Linear Quadratic Game
If X satisfies the Algebraic Riccati Equation

AT X + X A+ Q − X (Bu BT
u − BwBT

w /γ 2)X = 0

then ẋ = Ax + Buu+ Bww with x(0) = x(T) = 0 gives
∫ T

0
[xT Qx + uTu− γ 2wTw]dt

=

∫ T

0
pu+ BT

u X xp2dt− γ 2
∫ T

0
pw− BT

w X xp2dt

This can be viewed as a dynamic game between the player u,
who tries to minimize and w who tries to maximize.

The minimizing control law u = −BT
u X x gives

∫ T

0
[xT Qx + uTu]dt ≤ γ 2

∫ T

0
wTwdt

so the gain from w to z = (Q1/2x, u) is at most γ .

Algebraic Riccati Equations

A∗ X + X A+ X RX + Q = 0

where R = R∗, Q = Q∗.

◮ The ARE is as important for control design as the
Lyapunov equation is for system analysis.

◮ There are many solutions X = X ∗ to ARE, the stabilizing
one (which makes A+ RX stable) is unique!

◮ The ARE is a state space tool, which corresponds to
factorization in frequency domain (recall spectral
factorization in LQ Control).

How do we solve it?

Hamiltonian Matrix

Consider the 2n$ 2n matrix

H =


 A R
−Q −A∗


 .

Lemma: Eigenvalues of H are symmetric with respect to the
imaginary axis.

Proof: Introduce J =

0 −I

I 0


. Then J−1 H J = −H∗, so λ is

an eigenvalue of H if and only if −λ̄ is.

In particular, if there are no purely imaginary eigenvalues then
there are precisely n stable and n unstable eigenvalues of H.
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Stable Invariant Subspace

Under assumption of no purely imaginary eigenvalues, let

T =


X1

X2


 ∈ R2n$n

be a basis of the stable n-dimensional invariant subspace.
Equivalently HT = TΛ for some stable matrix Λ ∈ Rn$n.

Lemma: If det(X1) ,= 0 then X = X2 X −1
1 is a stabilizing

solution to the ARE A∗ X + X A+ X RX + Q = 0

Proof: We are to prove

1) X = X ∗.

2) X satisfies the ARE.

3) A+ RX is stable.

1) HT = TΛ [ T∗J HT = T∗JTΛ. The matrix J H is
symmetric then

T∗JTΛ = Λ∗T∗J∗T \ T∗JTΛ + Λ∗T∗JT = 0.

So T∗JT satisfies the Lyapunov equation and Λ is stable.
Hence T∗JT = 0, that is

X ∗
2 X1 − X ∗

1 X2 = 0 \ X ∗ − X = 0.

2) & 3) Simple calculation gives

AX1 + RX2 = X1Λ,
−Q X1 − A∗ X2 = X2Λ. \

A+ RX = X1Λ X −1
1

−Q − A∗ X = X2Λ X −1
1 .

Thus A+ RX is stable and

X A+ X RX = X2Λ X1 = −Q − A∗ X

which implies the ARE.

How to solve the ARE

Under conditions

(H1) There are no pure imaginary eigenvalues of H.

(H2) det(X1) ,= 0 for some basis of stable invariant subspace.

we can find a stabilizing solution to ARE as follows:

1. Find a basis T for the stable invariant subspace, for
example by Schur decomposition. If (H1) holds, then it has
the dimension n.

2. Partition T as

T =


X1

X2


 .

(H2) holds for some basis iff it holds for all basis.
3. Build X = X2 X −1

1 .

Notation

H ∈ dom(Ric) if (H1) and (H2) hold for H.

X = Ric(H) is the stabilizing solution to ARE.

ARE for H∞ norm conditions

Let
G(s) = C(sI − A)−1 B + D

where (A, B, C, D) is stabilizable and detectable. Introduce the
Hamiltonian matrix

H0 =


 A+BR−1 D∗C BR−1 B∗

−C∗(I+DR−1 D∗)C −(A+BR−1 D∗C)∗


 .

Theorem: Let G ∈ RH∞. The following conditions are
equivalent:

1. qGq∞ < 1,
2. (H1) holds for H0,
3. H0 ∈ dom(Ric).

Proof: The equivalence (1) \ (2) was proved in Lecture 1. For
(2) \ (3), see [Zhou, p. 237]

Assumptions

P

K

✲ ✲

✛

✲

w z

u y P =




A Bw Bu
Cz 0 Dzu
Cy Dyw 0




(A1) (A, Bw, Cz) is stabilizable and detectable,

(A2) (A, Bu, Cy) is stabilizable and detectable,

(A3) D∗
zu


Cz Dzu


 =


0 I


,

(A4)

 Bw

Dyw


 D∗

yw =


0

I


.

State Space H∞ optimization

The solution involves two AREs with Hamiltonian matrices

H∞ =


 A γ −2 BwB∗

w − Bu B∗
u

−C∗
z Cz −A∗




J∞ =


 A∗ γ −2C∗

z Cz − C∗
y Cy

−BwB∗
w −A




Theorem: There exists a stabilizing controller K such that
qTzwq∞ < γ if and only if the following three conditions hold:

1. H∞ ∈ dom(Ric) and X∞ = Ric(H∞) ≥ 0,
2. J∞ ∈ dom(Ric) and Y∞ = Ric(J∞) ≥ 0,
3. ρ(X∞Y∞) < γ 2.

Moreover, one such controller is

Ksub(s) =
[

Â∞ −Z∞L∞
F∞ 0

]

where

Â∞ = A+ γ −2 BwB∗
w X∞ + Bu F∞ + Z∞L∞Cy,

F∞ = −B∗
u X∞, L∞ = −Y∞C∗

y ,

Z∞ = (I − γ −2Y∞X∞)−1.

Furthermore, the set of all stabilizing controllers such that
qTwzq∞ < γ can be explicitly obtained as lower LFT (see
[Zhou,p. 271]).

[Doyle J., Glover K., Khargonekar P., Francis B., State Space
Solution to Standard H2 and H∞ Control Problems, IEEE
Trans. on AC 34 (1989) 831–847.]
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Idea of Proof

The dynamic game viewpoint gives a solution in the case of full
information, where both state and disturbance are measurable.
This gives the first ARE.

This can be combined with a “worst case observer”, finding the
smallest disturbance compatible with available measurements.
This gives the second ARE.

Combining the full information solution with the worst case
observer, solves the dynamc game problem with limited
measurement information, provided that the spectral radius
condition holds.

What have we learned today?

◮ H∞ optimization is fundamental problem for robust
synthesis.

◮ A dynamic game between controller and disturbance
◮ The state space approach gives easily implementable

conditions and formulas.
◮ Algebraic Riccati Equation is the main computational tool.
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