Algorithms III

Pontus Giselsson

Today's lecture

- coordinate descent
- coordinate gradient descent
- preconditioning
- envelope methods
- the error bound framework
- algorithm selection

Coordinate descent

- we want to minimize f which is proper closed and convex
- in coordinate descent, we optimize over one variable at a time
- consider

$$f(x) = f(x_1, x_2, \dots, x_n)$$

• algorithm is

$$\begin{aligned} x_1^{k+1} &\in \underset{x_1}{\operatorname{argmin}} f(x_1, x_2^k, x_3^k, \dots, x_n^k) \\ x_2^{k+1} &\in \underset{x_2}{\operatorname{argmin}} f(x_1^{k+1}, x_2, x_3^k, \dots, x_n^k) \\ x_3^{k+1} &\in \underset{x_3}{\operatorname{argmin}} f(x_1^{k+1}, x_2^{k+1}, x_3, \dots, x_n^k) \\ &\vdots \\ x_n^{k+1} &\in \underset{x_n}{\operatorname{argmin}} f(x_1^{k+1}, x_2^{k+1}, x_3^{k+1}, \dots, x_n) \end{aligned}$$

• also called coordinate minimization algorithm

Solves problem? - differentiable case

- $\bullet\,$ assume f differentiable, and stationary point found
- are we guaranteed to have found solution?

Solves problem? - differentiable case

- assume f differentiable, and stationary point found
- are we guaranteed to have found solution?
- yes, $0 = \frac{\partial f}{\partial x_i}(x)$ for all i, that is

$$\nabla f(x) = \left(\frac{\partial f}{\partial x_1}(x), \frac{\partial f}{\partial x_2}(x), \dots, \frac{\partial f}{\partial x_n}(x)\right) = 0$$

Solves problem? - nondifferentiable case

• what if *f* not differentiable?

Solves problem? - nondifferentiable case

- what if *f* not differentiable?
- no, consider e.g., $f(x,y) = |x y| + \frac{1}{2}(||x||^2 + ||y||^2)$

Solves problem? – separable case

consider

minimize
$$f(x) = g(x) + h(x)$$

- assume that g is convex and differentiable
- assume that $h(x) = \sum_{i=1}^n h_i(x_i)$ is PCC and non-differentiable
- will a stationary point of algorithm solve problem?

Solves problem? – separable case

- yes: let $\mathbf{x}_{i}^{k} = (x_{1}^{k+1}, \dots, x_{i-1}^{k+1}, x_{i}, x_{i+1}^{k}, \dots, x_{n}^{k})$
- first prove that x_i optimizes *i*th update if:

$$\langle \nabla_i g(\mathbf{x}_i^k), y_i - x_i \rangle + h_i(y_i) - h_i(x_i) \ge 0, \quad \forall y_i \in \mathbb{R}$$

- proof: let $\mathbf{y}_i^k = \mathbf{x}_i^k + e_i(y_i - x_i) = (x_1^{k+1}, \dots, x_{i-1}^{k+1}, y_i, x_{i+1}^k, \dots, x_n^k), \text{ then}$ $g(\mathbf{y}_i^k) - g(\mathbf{x}_i^k) \ge \langle \nabla g(\mathbf{x}_i^k), \mathbf{y}_i^k - \mathbf{x}_i^k \rangle = \langle \nabla g_i(\mathbf{x}_i^k), y_i - x_i \rangle$
- therefore, if condition holds, we have for all \mathbf{y}_i^k

$$f(\mathbf{y}_i^k) - f(\mathbf{x}_i^k) = g(\mathbf{y}_i^k) - g(\mathbf{x}_i^k) + h_i(y_i) - h_i(x_i)$$

$$\geq \langle \nabla_i g(\mathbf{x}_i^k), y_i - x_i \rangle + h_i(y_i) - h_i(x_i) \ge 0$$

• that is, $f(\mathbf{x}_i^k)$ has lowest value along *i*th coordinate

Solves problem? – separable case

- assume that $\mathbf{x}_1^k = \mathbf{x}_j^k$ for all $j = 2, \dots, n$
- that is, assume that we have reached a stationary point
- then, for any y and all \mathbf{x}_i^k (since they are equal), we have

$$f(y) - f(\mathbf{x}_j) = g(y) - g(\mathbf{x}_j^k) + \sum_{i=1}^n [h_i(y_i) - h_i(x_i)]$$

$$\geq \langle \nabla g(\mathbf{x}_j^k), y - \mathbf{x}_j^k \rangle + \sum_{i=1}^n [h_i(y_i) - h_i(x_i)]$$

$$= \sum_{i=1}^n \langle \underbrace{\nabla_i g(\mathbf{x}_j^k), y_i - x_i}_{\geq 0} + h_i(y_i) - h_i(x_i) \\ \geq 0$$

• that is, \mathbf{x}_j optimizes f

How about convergence?

- strong convergence guarantees are somewhat scarce
- we know that function value is nonincreasing, i.e.,

$$f(x_{i+1}^{k+1}) \leq f(x_i^{k+1})$$

assume level set $\{x \mid f(x) \leq f(x^0)\}$ closed bounded

- \Rightarrow subsequence converges
- 2-block coordinate descent:
 - sublinear convergence for smooth functions
 - linear convergence under additional strong convexity
- linear convergence under error bound property for F = f + g with
 - f smooth with component-wise strong convexity
 - $g = \iota_C$ with $C = I_1 \times \cdots \times I_n$ and I_i being intervals

Comments

- order of updates can be changed
- methods where coordinate to update is chosen on random exist
- can update on groups of coordinates instead of individual

Coordinate gradient descent

- in (proximal) coordinate gradient descent, we solve problem minimize f(x) + g(x)
- assume $g(x) = \sum_{i=1}^{p} g_i(x_i)$ block-separable and convex
- assume f block-smooth: let

$$\mathbf{x}_{i} = (x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{p})$$

$$\mathbf{y}_{i} = (x_{1}, \dots, x_{i-1}, y_{i}, x_{i+1}, \dots, x_{p})$$

• then f is block-smooth if it satisfies

$$f(\mathbf{y}_i) \le f(\mathbf{x}_i) + \langle \nabla f(\mathbf{x}_i), \mathbf{y}_i - \mathbf{x}_i \rangle + \frac{L_i}{2} \|\mathbf{y}_i - \mathbf{x}_i\|^2$$

for some L_i , all $\mathbf{x}_i, \mathbf{y}_i$ and $i = \{1, \dots, p\}$

equivalent condition

$$f(\mathbf{y}_i) \le f(\mathbf{x}_i) + \langle \nabla_i f(\mathbf{x}_i), y_i - x_i \rangle + \frac{L_i}{2} \|y_i - x_i\|^2$$

Coordinate gradient descent

- the algorithm looks like (assuming cyclic updates in 2,3) 1. choose block-coordinate $i_k = i \in \{1, 2, \dots, n\}$ to update 2. let $\mathbf{x}_i = (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i, x_{i+1}^k, \dots, x_p^k)$ 3. let $\mathbf{x}_i^k = (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, x_{i+1}^k, \dots, x_p^k)$ 4. compute $x_i^{k+1} = \underset{x_i}{\operatorname{argmin}} \{f(\mathbf{x}_i^k) + \langle \nabla f(\mathbf{x}_i^k), \mathbf{x}_i - \mathbf{x}_i^k \rangle + \frac{L_i}{2} \|\mathbf{x}_i - \mathbf{x}_i^k\|^2 + g(\mathbf{x}_i)\}$
- f is approximated by block-smoothness upper bound

Simplification of main step

recall

$$\begin{split} \mathbf{x}_i &= (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i, x_{i+1}^k, \dots, x_p^k) \\ \mathbf{x}_i^k &= (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, x_{i+1}^k, \dots, x_p^k) \end{split}$$

• the main step can be written as

$$\begin{split} x_i^{k+1} &= \operatorname*{argmin}_{x_i} \{ f(\mathbf{x}_i^k) + \langle \nabla f(\mathbf{x}_i^k), \mathbf{x}_i - \mathbf{x}_i^k \rangle + \frac{L_i}{2} \| \mathbf{x}_i - \mathbf{x}_i^k \|^2 + g(\mathbf{x}_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \langle \nabla_i f(\mathbf{x}_i^k), x_i - x_i^k \rangle + \frac{L_i}{2} \| x_i - x_i^k \|^2 + g_i(x_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \frac{L_i}{2} \| x_i - x_i^k + \frac{1}{L_i} \nabla_i f(\mathbf{x}_i^k) \|^2 + g_i(x_i) \} \\ &= \operatorname{prox}_{\frac{1}{L_i} g_i} (x_i^k - \frac{1}{L_i} \nabla_i f(\mathbf{x}_i^k)) \end{split}$$

• we take coordinate-wise forward-backward steps

Convergence

- convergence if block-coordinate to update is randomly chosen
- can use probabilities proportional to L_i^γ for $\gamma \in [0,1]$
 - $\gamma = 0$ implies uniform distribution
 - $\gamma = 1$ implies coordinates with high L_i are chosen more often
- the convergence is in expectation or "with high probability"
- some results on deterministic schemes also exist:
 - cyclic order with $g \equiv 0$ (smooth case)
 - cyclic order with $g = \iota_C$ with $C = C_1 \times \cdots \times C_p$
- if p updates (one sweep) same cost as one gradient computation
 - \Rightarrow coordinate gradient descent faster than gradient descent

Smoothness with different metric

- let's use a different metric in f block-smoothness
- let $W = \operatorname{diag}(W_1, \ldots, W_p)$ with $W_i \succ 0$ and

$$\mathbf{x}_{i} = (x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{p})$$

$$\mathbf{y}_{i} = (x_{1}, \dots, x_{i-1}, y_{i}, x_{i+1}, \dots, x_{p})$$

• f is block-smooth with metric W if it satisfies

$$f(\mathbf{y}_i) \le f(\mathbf{x}_i) + \langle \nabla f(\mathbf{x}_i), \mathbf{y}_i - \mathbf{x}_i \rangle + \frac{1}{2} \|\mathbf{y}_i - \mathbf{x}_i\|_W^2$$

for all $\mathbf{x}_i, \mathbf{y}_i$ and $i = \{1, \dots, p\}$

• equivalent to the above:

$$f(\mathbf{y}_i) \le f(\mathbf{x}_i) + \langle \nabla_i f(\mathbf{x}_i), y_i - x_i \rangle + \frac{1}{2} \| y_i - x_i \|_{W_i}^2$$

• previous block-smoothness obtained by $W = diag(L_1I, \ldots, L_pI)$

Generalized method with different metric

- the algorithm looks like (assuming cyclic updates in 2,3)
 - 1. choose block-coordinate $i_k = i \in \{1, 2, ..., n\}$ to update 2. let $\mathbf{x}_i = (x_1^{k+1}, ..., x_{i-1}^{k+1}, x_i, x_{i+1}^k, ..., x_n^k)$

 - 3. let $\mathbf{x}_{i}^{k} = (x_{1}^{k+1}, \dots, x_{i-1}^{k+1}, x_{i}^{k}, x_{i+1}^{k}, \dots, x_{n}^{k})$
 - 4. compute

$$x_i^{k+1} = \underset{x_i}{\operatorname{argmin}} \{ f(\mathbf{x}_i^k) + \langle \nabla f(\mathbf{x}_i^k), \mathbf{x}_i - \mathbf{x}_i^k \rangle + \frac{1}{2} \| \mathbf{x}_i - \mathbf{x}_i^k \|_W^2 + g(\mathbf{x}_i) \}$$

• f again approximated by block-smoothness upper bound

Simplification of main step

recall

$$\begin{split} \mathbf{x}_i &= (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i, x_{i+1}^k, \dots, x_p^k) \\ \mathbf{x}_i^k &= (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, x_{i+1}^k, \dots, x_p^k) \end{split}$$

• the main step can be written as

$$\begin{aligned} x_i^{k+1} &= \operatorname*{argmin}_{x_i} \{ f(\mathbf{x}_i^k) + \langle \nabla f(\mathbf{x}_i^k), \mathbf{x}_i - \mathbf{x}_i^k \rangle + \frac{1}{2} \| \mathbf{x}_i - \mathbf{x}_i^k \|_W^2 + g(\mathbf{x}_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \langle \nabla_i f(\mathbf{x}_i^k), x_i - x_i^k \rangle + \frac{1}{2} \| x_i - x_i^k \|_{W_i}^2 + g_i(x_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \frac{1}{2} \| x_i - x_i^k + W_i^{-1} \nabla_i f(\mathbf{x}_i^k) \|_{W_i}^2 + g_i(x_i) \} \end{aligned}$$

- we take skewed coordinate-wise forward-backward steps
- (can use skewed metric also in normal forward-backward splitting)

Quadratic case

• consider the quadratic case

 ${\rm minimize}\ f(x) + g(x)$

• the function $f(x) = \frac{1}{2} x^T H x + q^T x$ where

$$H = \begin{bmatrix} H_{11} & \cdots & H_{1p} \\ \vdots & \ddots & \vdots \\ H_{p1} & \cdots & H_{pp} \end{bmatrix}, \qquad \qquad q = \begin{bmatrix} q_1 \\ \vdots \\ q_p \end{bmatrix}$$

- assume that H positive semi-definite and H_{ii} positive definite
- assume g is block-separable (as before)

Assumption on H

- the assumption that H_{ii} positive definite not very conservative
- consider the case with blocks of size 1
- requirement is that all diagonal elements of ${\boldsymbol{H}}$ are positive
- consider a rank 1 matrix $H = hh^T$
 - $H_{ii} = 0$ if and only if row and column i all zeros
- to require H to be positive definite, it must have full rank

Algorithm

- apply generalized coordinate gradient descent with $W_i = H_{ii}$
- the algorithm becomes (assuming cyclic updates in 2,3)
 - 1. choose block-coordinate $i_k = i \in \{1, 2, \dots, n\}$ to update
 - 2. let $\mathbf{x}_i = (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i, x_{i+1}^k, \dots, x_n^k)$
 - 3. let $\mathbf{x}_i^k = (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, x_{i+1}^k, \dots, x_n^k)$
 - 4. compute

$$x_i^{k+1} = \underset{x_i}{\operatorname{argmin}} \{ \frac{1}{2} \| x_i - x_i^k + H_{ii}^{-1} \nabla_i f(\mathbf{x}_i^k) \|_{H_{ii}}^2 + g_i(x_i) \}$$

Simplification of main step

• recall that
$$f(x) = \frac{1}{2}x^T H x + q^T x$$
,
 $\mathbf{x}_i^k = (x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i^k, x_{i+1}^k, \dots, x_n^k)$

and let

$$U^T = [0, \dots, 0, I, 0, \dots, 0]$$

• then

$$\nabla_i f(\mathbf{x}_i^k) = U^T (H\mathbf{x}_i^k + q) = H_{ii} x_i^k + \sum_{j < i} H_{ij} x_j^{k+1} + \sum_{j > i} H_{ij} x^k + q_i$$

• inserting this into main step gives:

$$\begin{split} x_i^{k+1} &= \operatorname*{argmin}_{x_i} \{ \frac{1}{2} \| x_i - x_i^k + H_{ii}^{-1} \nabla_i f(\mathbf{x}_i^k) \|_{H_{ii}}^2 + g_i(x_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \frac{1}{2} \| x_i + H_{ii}^{-1} (\sum_{j < i} H_{ij} x_j^{k+1} + \sum_{j > i} H_{ij} x_j^k + q_i) \|_{H_{ii}}^2 + g_i(x_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \frac{1}{2} x_i^T H_{ii} x_i + x_i^T (\sum_{j < i} H_{ij} x_j^{k+1} + \sum_{j > i} H_{ij} x_j^k + q_i) + g_i(x_i) \} \end{split}$$

Compare to coordinate descent step

- $\bullet \ \, {\rm let} \ F=f+g$
- the *i*th update in the coordinate descent method is

$$x_i^{k+1} = \operatorname*{argmin}_{x_i} F(x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i, x_{i+1}^k, \dots, x_p^k)$$

• since g block-separable, this can be written as

$$\begin{aligned} x_i^{k+1} &= \operatorname*{argmin}_{x_i} \{ f(x_1^{k+1}, \dots, x_{i-1}^{k+1}, x_i, x_{i+1}^k, \dots, x_p^k) + g_i(x_i) \} \\ &= \operatorname*{argmin}_{x_i} \{ \frac{1}{2} x_i^T H_{ii} x_i + x_i^T (\sum_{j < i} H_{ij} x_j^{k+1} + \sum_{j > i} H_{ij} x_j^k) + q_i^T x_i + g_i(x_i) \} \end{aligned}$$

last step holds since

$$f(x) = \frac{1}{2}x^{T}Hx + q^{T}x = \frac{1}{2}\sum_{i=1}^{p}\sum_{j=1}^{p}x_{i}^{T}H_{ij}x_{j} + \sum_{i=1}^{p}q_{i}^{T}x_{i}$$

Algorithms identical

- in this setting iterates are identical
- coordinate descent special case of coordinate gradient descent
- to my knowledge, first time this link has been provided
- why are iterates identical? since skewed block-smoothness

$$f(\mathbf{y}_i) \le f(\mathbf{x}_i) + \langle \nabla f(\mathbf{x}_i), \mathbf{y}_i - \mathbf{x}_i \rangle + \frac{1}{2} \|\mathbf{y}_i - \mathbf{x}_i\|_W^2$$

holds with equality for $W = diag(H_{11}, \ldots, H_{pp})$ and

$$\mathbf{x}_{i} = (x_{1}, \dots, x_{i-1}, x_{i}, x_{i+1}, \dots, x_{p})$$

$$\mathbf{y}_{i} = (x_{1}, \dots, x_{i-1}, y_{i}, x_{i+1}, \dots, x_{p})$$

Implications

- convergence for coordinate gradient descent more mature
- can use this to get new convergence *rates* of coordinate descent

Preconditioning

consider solving the problem using a first-order method

minimize f(x) + g(x)

• change of variables x = Tq (T invertible) gives problem

minimize
$$f(Tq) + g(Tq) =: f_T(q) + g_T(q)$$

- optimal x^\star to original problem is $x^\star = Tq^\star$
- \bullet with appropriate T, performance may be significantly improved
- (Newton's method is invariant to change of variables)

Preconditioning in FB splitting

- solve $\min_{q} \{ f_T(q) + g_T(q) \}$ using forward-backward splitting: $q^{k+1} = \operatorname{prox}_{\gamma q_T} (\operatorname{Id} - \gamma \nabla f_T) q^k$ $= \operatorname{argmin} \{ g_T(q) + \frac{1}{2\gamma} \| q - q^k + \gamma \nabla f_T q^k \|^2 \}$ $= \operatorname{argmin}\{g(Tq) + \frac{1}{2\gamma} \|q - q^k + \gamma T^T \nabla f(Tq^k)\|^2\}$ $= \operatorname{argmin}\{g(Tq) + \langle T^T \nabla f(Tq^k), q - q^k \rangle + \frac{1}{2\gamma} \|q - q^k\|^2\}$ $= \operatorname{argmin}\{g(Tq) + \langle \nabla f(Tq^k), Tq - Tq^k \rangle + \frac{1}{2\alpha} \|q - q^k\|^2\}$ $= T^{-1} \operatorname{argmin} \{ g(x) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2\gamma} \| x - x^k \|_{T^{-2}}^2 \}$
- we assumed that $Tq^k = x^k$, therefore, iteration is equivalent to $x^{k+1} = \underset{x}{\operatorname{argmin}} \{g(x) + f(x^k) + \langle \nabla f(x^k), x - x^k \rangle + \frac{1}{2\gamma} \|x - x^k\|_{T^{-2}}^2 \}$
- standard FB splitting obtained by letting T = I
- ${\ensuremath{\,\bullet\,}}$ that is, we have a different quadratic approximation to f
- if approximation better, probably faster convergence!

Linear convergence

- look at problem with properties that guarantee linear convergence
- if f is $\sigma\text{-strongly convex and }\beta\text{-smooth then}$
 - DR converges as $\frac{\sqrt{\beta/\sigma}-1}{\sqrt{\beta/\sigma}+1}$ if optimal parameters used
 - FB converges as $\frac{\dot{\beta}/\sigma-1}{\beta/\sigma+1}$ if optimal parameters used
- both rates get better with decreasing β/σ
- most first-order methods perform better with decreasing β/σ \Rightarrow choose preconditioner T such that β/σ decreased

Example

- consider the problem with $f(x) = \frac{1}{2}x^THx + h^Tx$ where $H \succ 0$
- then f is $\lambda_{\max}(H)\text{-smooth}$ and $\lambda_{\min}(H)\text{-strongly convex}$
- that is $\beta(f)/\sigma(f) = \lambda_{\max}(H)/\lambda_{\min}(H) =: \kappa(H)$
- what is $\beta(f_T)$ and $\sigma(f_T)$?
- we have $f_T(q) = f(Tq) = \frac{1}{2}q^T THTq + h^T Tx$
- therefore $\beta(f_T) = \lambda_{\max}(T^T H T)$ and $\sigma(f_T) = \lambda_{\min}(T^T H T)$

Example

- we have $\beta(f_T) = \lambda_{\max}(T^THT)$ and $\sigma(f_T) = \lambda_{\min}(T^THT)$
- so the rates depend on $\lambda_{\max}(T^THT)/\lambda_{\min}(T^THT)$
- ${\ensuremath{\,\bullet\,}}$ we want to choose T such that this ratio is minimized
- by letting $T=H^{-1/2},$ we get $\lambda_{\max}(T^THT)/\lambda_{\min}(T^THT)=1$
- are there any drawbacks with this choice?

Full variable transformations

• consider, e.g., forward backward splitting on

minimize $f_T(q) + g_T(q)$

with $f_T(q) = \frac{1}{2} q^T T^T H T q + h^T T q$

• this is given by

$$q^{k+1} = \mathsf{prox}_{\gamma g_T} (\mathrm{Id} - \gamma \nabla f_T) q^k = \mathsf{prox}_{\gamma g_T} (\mathrm{Id} - \gamma (T^T H T q^k + T^T h)) q^k$$

- forward step $\mathrm{Id} \gamma (T^T H T q^k + T^T h)$ a bit more expensive
- backward step

$$prox_{\gamma g_T}(z) = \underset{q}{\operatorname{argmin}} \{g_T(q) + \frac{1}{2\gamma} ||q - z||^2 \}$$
$$= \underset{q}{\operatorname{argmin}} \{g(Tq) + \frac{1}{2\gamma} ||q - z||^2 \}$$

might be much more expensive (if g separable)

• however, if T diagonal $\Rightarrow\approx$ unchanged computational cost!

Computing T

• in the quadratic case, we want to solve

 $\begin{array}{ll} \mbox{minimize} & \lambda_{\max}(T^THT)/\lambda_{\min}(T^THT) \\ \mbox{subject to} & T \mbox{ diagonal} \end{array}$

- this can be posed as (convex) semi-definite program
 ⇒ optimal diagonal preconditioning can be achieved
- \bullet drawback: computationally very expensive to find optimal T also limited to fairly small-scale problems
- works in applications (MPC) where T can be computed offline

Heuristic methods to compute T

 $\bullet\,$ the objective is to find diagonal T such that ratio decreased

$$\lambda_{\max}(T^T H T) / \lambda_{\min}(T^T H T)$$

- finding T should be much faster than solving $\min_x \{f(x) + g(x)\}$
- $\bullet\,$ cheap heuristics: 1-norm, 2-norm, and $\infty\text{-norm}$ equilibration

Equilibration

- let s = 1, s = 2 or $s = \infty$
- in symmetric s-norm equilibration, the objective is to find T s.t.:

$$\|[T^T H T]_{i \cdot}\| = 1 \qquad \text{for all } i$$

- we want the resulting matrix to have equal s-norm in every row
- since matrix symmetric, also all columns have same s-norm

∞ -norm equilibration

- in $\infty\text{-norm}$ equilibration $\infty\text{-norm}$ of each row should be the same
- we have $||x||_{\infty} = \max_i |x_i|$
- therefore set the absolute value of largest element in each row to 1
- this is obtained by letting $T_{ii} = 1/\sqrt{H_{ii}}$
- this is also called Jacobi scaling

1-norm equilibration

- recall $\|x\|_1 = \sum_i |x_i|$ and that T diagonal
- let $\bar{H} = abs(H)$ and t = diag(T)
- assume T > 0, then 1-norm of row i is given by

$$\|[T^T H T]_i\|_1 = \sum_{j=1}^n |T_{ii} H_{ij} T_{jj}| = T_{ii} \sum_{j=1}^n \bar{H}_{ij} T_{jj} = T_{ii} \bar{H}_{i,\cdot} t$$

• therefore, 1-norm equilibration is obtained by solving

$$T\bar{H}t=\mathbf{1} \quad \Leftrightarrow \quad \bar{H}t-T^{-1}\mathbf{1}=0$$

• l.h.s. is gradient of function (recall t > 0)

$$\frac{1}{2}t^T\bar{H}t - \log(t)$$

- change of variables $t \to e^t$ makes it convex
- solved readily by coordinate descent or Sinkhorn-Knopp algorithm

2-norm equilibration

- in 2-norm equilibration we want all rows to have equal 2-norm
- the squared 2-norm of row i is given by

$$\|[T^T H T]_i\|_2^2 = \sum_{j=1}^n (T_{ii} H_{ij} T_{jj})^2 = T_{ii}^2 \sum_{j=1}^n \bar{H}_{ij}^2 T_{jj}^2 = T_{ii}^2 \bar{H}_{i,.}^2 t^2$$

where square on vectors are element-wise

- let $S = T^2$, and $\hat{H} = \bar{H}^2$ (element-wise)
- then problem is same as in 1-norm case

$$S\hat{H}s = \mathbf{1} \quad \Leftrightarrow \quad \hat{H}s - S^{-1}\mathbf{1} = 0$$

solve using same techniques

If not linear convergence?

• consider again a quadratic problem

minimize f(x) + g(x)

with $f(x) = \frac{1}{2} x^T H x + h^T x$ and g separable

- if H not positive definite, we do not get linear convergence
- we can use heuristic to choose T by optimizing

 $\begin{array}{ll} \mbox{minimize} & \lambda_{\max}(T^THT)/\lambda_{\min>0}(T^THT) \\ \mbox{subject to} & T \mbox{ diagonal} \end{array}$

where $\lambda_{\min>0}$ is smallest non-zero eigenvalue

- can be posed a (convex) semi-definite program
- can use equilibration heuristics to approximate solution

Dual algorithms

• consider the problem

minimize f(x) + g(Lx)

• such problems are often solved via the dual

minimize
$$f^*(-L^*\mu) + g^*(\mu) =: d(\mu) + g^*(\mu)$$

• linear convergence rate of DR and FB depends on $\beta(d)/\sigma(d)$

Precondition dual problem

- we perform a linear change of variables for dual problem $\mu=T\nu$

minimize
$$f(-L^*\nu) + g^*(T\nu) = d_T(\mu) + g^*_T(\nu)$$

this is dual problem to

minimize
$$f(x) + g(y)$$

subject to $TLx = Ty$

or to the problem

minimize
$$f(x) + g_{T^{-1}}(z)$$

subject to $TLx = z$

where $g_{T^{-1}}(z) = g(T^{-1}z)$

Quadratic problems

• consider again a quadratic problem

minimize f(x) + g(Lx)

with $f(x) = \frac{1}{2}x^T H x + h^T x$, H positive definite, and g separable • the conjugate of f is

$$f^*(\lambda) = \frac{1}{2}(\lambda - h)^T H^{-1}(\lambda - h)$$

• therefore

$$d(\mu) = f^*(-L^T \mu) = \frac{1}{2}(L^T \mu + h)^T H^{-1}(L^T \mu + h)$$

i.e., a quadratic with Hessian $LH^{-1}L^T$

• linear convergence of many algorithms if $\lambda_{\min}(LH^{-1}L^T) > 0$

Selecting preconditioner

- we select preconditioner to minimize condition number of Hessian $\begin{array}{ll} \mbox{minimize} & \lambda_{\max}(T^TLH^{-1}L^TT)/\lambda_{\min}(T^TLH^{-1}L^TT) \\ \mbox{subject to} & T \mbox{ diagonal} \end{array}$
- again, we select T diagonal, if not, iteration complexity increased

If not linear convergence?

• consider problems of the form

minimize
$$f_1(x) + f_2(x) + g(Lx)$$

- let $f=f_1+f_2$ and assume $f_1(x)=\frac{1}{2}x^THx+h^Tx$
- assume f_2 does not have curvature (indicator function, piece-wise linear)
- precondition as if $f_2 \equiv 0$
- then the dual to precondition is

$$\begin{aligned} d_1(\mu) &= (f_1^* \circ -L^*)(\mu) \\ &= \begin{cases} \frac{1}{2} (L^T \mu + h)^T H^{\dagger} (L^T \mu + h) & \text{if } (L^T \mu + q) \in \mathcal{R}(H) \\ \infty & \text{else} \end{cases} \end{aligned}$$

where ${\cal H}^{\dagger}$ is the pseudo-inverse

Heuristic preconditioning

• the dual to be preconditioned is

$$\begin{split} d_1(\mu) &= (f_1^* \circ -L^*)(\mu) \\ &= \begin{cases} \frac{1}{2} (L^T \mu + h)^T H^{\dagger} (L^T \mu + h) & \text{if } (L^T \mu + q) \in \mathcal{R}(H) \\ \infty & \text{else} \end{cases} \end{split}$$

- precondition by change of variables to get $d_T = (d \circ T)$
- make d_T as well conditioned as possible, i.e., select T as:

$$\begin{array}{ll} \mbox{minimize} & \lambda_{\max}(TLH^{\dagger}L^{T}T)/\lambda_{\min>0}(TLH^{\dagger}L^{T}T) \\ \mbox{subject to} & T \mbox{ diagonal} \end{array}$$

- reduces to linearly convergent preconditioner if H invertible
- can be posed as (convex) semi-definite program
- $\bullet\,$ can use equilibration methods to find "good enough" T

Envelope methods

- we have considered methods for nonsmooth problems
- what if we can formulate equivalent smooth problem?
- here equivalent means the have same set of solutions
- then could use smooth optimization to solve nonsmooth problems

Moreau envelope

• recall the Moreau envelope

$${}^{\gamma}f(z) = \min_{x} \{f(x) + \frac{1}{2\gamma} \|x - z\|^2\}$$

• the gradient of ${}^{\gamma}f$ is

$$\begin{split} \nabla^{\gamma} f(z) &= \gamma^{-1} (\mathrm{Id} - \operatorname*{argmin}_{x} \{f(x) + \frac{1}{2\gamma} \|x - z\|^{2} \}) \\ &= \gamma^{-1} (\mathrm{Id} - \mathrm{prox}_{\gamma f}) z \end{split}$$

• the gradient is γ^{-1} -Lipschitz continuous (prox_{γf} firmly nonexpansive $\Leftrightarrow \operatorname{Id} - \operatorname{prox}_{\gamma f}$ firmly nonexpansive)

Gradient method

• the gradient method with $t = \gamma$ to minimize the Moreau envelope:

$$\begin{split} z^{k+1} &= z^k - t \nabla^\gamma f(z^k) \\ &= z^k - t \gamma^{-1} (z^k - \operatorname{prox}_{\gamma f}(z^k)) \\ &= \operatorname{prox}_{\gamma f}(z^k) \end{split}$$

- it is the proximal point algorithm on \boldsymbol{f}
- minimize a nonsmooth f by gradient method on smooth function
- can use any method for smooth optimization to solve problem

Forward-backward splitting for quadratic problem

- assume that $f(x) = \frac{1}{2} x^T H x + h^T x$ with H positive semi-definite
- \bullet assume also that g is proper closed and convex
- we want to solve

minimize f(x) + g(x)

• forward-backward splitting applied to this problem is

$$x^{k+1} = \mathrm{prox}_{\gamma g}(I - \gamma \nabla f) x^k = \mathrm{prox}_{\gamma g}((I - \gamma H) x^k - \gamma h)$$

• let $L_{\gamma} = (I - \gamma H)$, then FB algorithm can be written as

$$x^{k+1} = \operatorname{prox}_{\gamma g}(L_{\gamma}x^k - \gamma h)$$

• further introduce $h_{\gamma} = \gamma g + \frac{1}{2} \| \cdot \|^2$, then $\operatorname{prox}_{\gamma g} = \nabla h_{\gamma}^*$, i.e.,:

$$x^{k+1} = \nabla h^*_{\gamma}(L_{\gamma}x^k - \gamma h)$$

Forward-backward envelope

• assume γ such that $L_{\gamma}=(I-\gamma H)$ invertible

• consider the function, called the *forward-backward envelope*

$$F_{\gamma}^{\text{FB}}(x) = \frac{1}{2} \|x\|_{L_{\gamma}}^{2} - (h_{\gamma}^{*} \circ L_{\gamma})(x - L_{\gamma}^{-1}\gamma h)$$

• the gradient of F_γ is given by (since $L_\gamma = L_\gamma^*)$

$$\nabla F_{\gamma}^{\mathrm{FB}}(x) = L_{\gamma}x - L_{\gamma}\nabla h_{\gamma}^{*}(L_{\gamma}x - \gamma h)$$

• consider the skewed gradient method on F_{γ}^{FB} :

$$\begin{split} x^{k+1} &= x^k - L_{\gamma}^{-1} \nabla F_{\gamma}^{\text{FB}}(x^k) \\ &= x^k - L_{\gamma}^{-1} (L_{\gamma} x^k - L_{\gamma} \nabla h_{\gamma}^* (L_{\gamma} x^k - \gamma h)) \\ &= x^k - x^k + \nabla h_{\gamma}^* (L_{\gamma} x^k - \gamma h) \\ &= \nabla h_{\gamma}^* (L_{\gamma} x^k - \gamma h) \\ &= \operatorname{prox}_{\gamma g} ((I - \gamma H) x^k - \gamma h) \\ &= \operatorname{prox}_{\gamma g} (I - \gamma \nabla f) x^k \end{split}$$

• it is the proximal gradient method

FB envelope stationary points

• stationary points of FB envelope satisfy

$$0 = \nabla F_{\gamma}^{\mathrm{FB}}(x) = L_{\gamma}x - L_{\gamma}\nabla h_{\gamma}^{*}(L_{\gamma}x - \gamma h)$$

• since L_{γ} assumed invertible, this is equivalent to

$$x = \nabla h_{\gamma}^* (L_{\gamma} x - \gamma h) = \operatorname{prox}_{\gamma g} (I - \gamma \nabla f) x$$

• set of critical points of envelope agrees with minimizers of f + g

FB envelope convexity

• let
$$\gamma \in (0, \frac{1}{\beta}) = (0, \frac{1}{\lambda_{\max}(H)})$$

- then $L_{\gamma} = (I \gamma H)$ is invertible and F_{γ}^{FB} is convex
- proof: F_{γ}^{FB} is convex $\Leftrightarrow (h_{\gamma}^* \circ L_{\gamma})(x - L_{\gamma}^{-1}\gamma h)$ is 1-smooth w.r.t. $\|\cdot\|_{L_{\gamma}}$
- we know h_γ is 1-strongly convex for all γ
- therefore h^*_{γ} is 1-smooth, i.e.,

$$\begin{split} (h_{\gamma}^{*} \circ L_{\gamma})(x - L_{\gamma}^{-1}\gamma h) &= h_{\gamma}^{*}(L_{\gamma}y - \gamma h) \\ &\leq h_{\gamma}^{*}(L_{\gamma}x - \gamma h) + \langle \nabla h_{\gamma}^{*}(L_{\gamma}x - \gamma h), L_{\gamma}y - L_{\gamma}x \rangle + \frac{1}{2} \|L_{\gamma}(x - y)\|^{2} \\ &= (h_{\gamma}^{*} \circ L_{\gamma})(x - L_{\gamma}^{-1}\gamma h) + \langle L_{\gamma}\nabla h_{\gamma}^{*}(L_{\gamma}x - \gamma h), y - x \rangle + \frac{1}{2} \|L_{\gamma}(x - y)\|^{2} \\ &= (h_{\gamma}^{*} \circ L_{\gamma})(x - L_{\gamma}^{-1}\gamma h) + \langle \nabla (h_{\gamma}^{*} \circ L)(x - L_{\gamma}^{-1}\gamma h), y - x \rangle + \frac{1}{2} \|x - y\|_{L_{\gamma}^{2}}^{2} \end{split}$$

• that is
$$(h_{\gamma}^* \circ L_{\gamma})(x - L_{\gamma}^{-1}\gamma h)$$
 is 1-smooth w.r.t. $\|\cdot\|_{L^2_{\gamma}}$

FB envelope convexity

- recall $L_{\gamma} = (I \gamma H)$
- let $L_{\gamma} = U \Sigma U^T$, where Σ diagonal with singular values
- since $\gamma \in (0, \frac{1}{\lambda_{\max}(H)})$, then $0 \prec L_{\gamma} \prec I$ and $\sigma_i \in (0, 1)$
- therefore

$$x^T L_{\gamma}^2 x = x^T U \Sigma^2 U^T x = v^T \Sigma^2 v = \sum_{i=1}^n \sigma_i^2 v_i^2 \le \sum_{i=1}^n \sigma_i v_i^2$$
$$\le x^T L_{\gamma} x$$

- that is, for $\gamma \in (0, \frac{1}{\lambda_{\max}(H)})$ we have $\|x-y\|_{L^2_{\gamma}} \leq \|x-y\|_{L_{\gamma}}$
- therefore our function is 1-smooth w.r.t. the L_{γ} -norm
- hence F_{γ}^{FB} is convex (and also 1-smooth w.r.t. $\|\cdot\|_{L_{\gamma}}$)

Consequence

- for quadratic f, the FB method with $\gamma \in (0, \frac{1}{\beta})$ is gradient method to envelope
- we have shown that stationary points coincide with optimizers to $\min_x \{f(x) + g(x)\}$
- we have shown that envelope convex in this case
- then stationary points are minimizers of envelope
- i.e., equivalent to minimize smooth envelope and to minimize composite problem
- can use any smooth method to solve problem

FB envelope and DR envelope

- similar envelope function can be created for DR splitting
- envelope function properties:
 - take gradient step on envelope function to get back algorithm
 - stationary points to envelopes coincide with fixed-points to operators
- in quadratic case, envelopes convex
- then, can solve nonsmooth problems using smooth methods
- can, e.g, incorporate second order information (quasi-Newton)
 ⇒ might improve (asymptotic) convergence
- caveat: envelope often not twice continuously differentiable (however, twice continuously differentiable almost everywhere)

The error bound property

- assume that $T \ : \ \mathbb{R}^n \to \mathbb{R}^n$ is α -averaged
- that is, assume that $T=(1-\alpha)\mathrm{Id}+\alpha R$ for nonexpansive R
- assume that for all $x \in \mathbb{R}^n$, the following holds

$$\operatorname{dist}_{\mathsf{fix}R}(x) \le \tau \|x - Rx\|$$

for some $\tau \in (0,\infty)$

- iterate the operator as $x^{k+1} = Tx^k$
- then we get linear convergence in distance to fixed-point set

Linear convergence, proof

• proof: an α -averaged operator satisfies $||Tx - Ty||^2 \le ||x - y||^2 - \frac{1 - \alpha}{2} ||(Id - T)x - (Id - T)y)||^2$ recall the error bound property $\operatorname{dist}_{\operatorname{fix} B}(x) \leq \tau \|x - Rx\|$ $= \tau \|x - (1 - \alpha^{-1})x - \alpha^{-1}Tx\| = \tau \alpha^{-1} \|x - Tx\|$ • let $x = x^k$ and $y = x^*$ where $x^* \in fixT$ is closest point to x^k $\operatorname{dist}^{2}_{\mathbf{fix}, \pi}(x^{k+1}) \leq \|x^{k+1} - x^{\star}\|^{2}$ $< \|x^{k} - x^{\star}\|^{2} - \frac{1-\alpha}{2} \|x^{k} - Tx^{k}\|^{2}$ $\leq \operatorname{dist}^2_{\mathsf{fix}_{\mathcal{T}}}(x^k) - \frac{\alpha(1-\alpha)}{\tau^2} \operatorname{dist}^2_{\mathsf{fix}_{\mathcal{T}}}(x^k)$ $=(1-\frac{\alpha(1-\alpha)}{2})\operatorname{dist}^{2}_{\mathbf{fix},\tau}(x^{k})$

(recall $Tx^{\star} = x^{\star}$ and $Tx^{k} = x^{k+1}$)

• that is, linear convergence with rate $\sqrt{1-\frac{\alpha(1-\alpha)}{\tau^2}}$

Questions

- what problems and algorithms satisfy error bound property?
- can we quantify τ for those
- can it be used to show linear convergence for
 - coordinate descent methods with operators (with cyclic updates)?
 - FB splitting method with less restrictive assumptions?
 - DR splitting method with less restrictive assumptions?

Problem splitting

• to choose splitting is to formulate optimization problem on form

 $\begin{array}{ll} \mbox{minimize} & f(x) + g(y) \\ \mbox{subject to} & Lx = y \end{array}$

• main splitting rule:

"choose f, g, and L to get as cheap iterates as possible"

- if, e.g, g separable, we would like to exploit this in algorithm
- if many iterations, try different splitting or different algorithm

Algorithm selection for large-scale problems

- consider the following list of algorithms
 - coordinate gradient descent
 - coordinate descent
 - (stochastic) subgradient method
 - forward-backward splitting (and accelerated variants)
 - linearized ADMM
 - Douglas-Rachford splitting
 - ADMM
 - three-splitting method
 - envelope methods with second order information
 - active set methods (sometimes applicable, not covered here)
 - interior-point methods (not covered here)
- iteration complexity grows downwards in the list
- typically, number of iterations grows upwards in the list \Rightarrow trade-off
- for large-scale problems
 - start with (feasible) method with cheapest iteration cost
 - if too many iterations, then traverse down the list