Algorithms IlI

Pontus Giselsson

Today’s lecture

coordinate descent
coordinate gradient descent
preconditioning

envelope methods

the error bound framework

algorithm selection

Coordinate descent

® we want to minimize f which is proper closed and convex
® in coordinate descent, we optimize over one variable at a time
® consider

f(x) :f<l'1,x2,...,£ﬂn)

® algorithm is

k+1 . ko k k
x{" € argmin f(zq1, x5, z3,...,2,)
z1
k+1 . k41 k K
xs ' € argmin f(z)", x2, 3, ..., 2,)
T
E+1 : k+1 , k+1 k
xg 0 €argmin f(zi" x5, X, ..., 2,)

z3

k

k+1 _k+1 k41
n 1

1 ¢ argmin f(z I N

Tn

X

® also called coordinate minimization algorithm

Solves problem? — differentiable case

® assume f differentiable, and stationary point found

® are we guaranteed to have found solution?

Solves problem? — differentiable case

® assume f differentiable, and stationary point found
® are we guaranteed to have found solution?
® ves, 0 = g—aﬂ:(x) for all 4, that is

Vi) = (;"jl(m,(fxf?(x),...,;i(x)) 0

Solves problem? — nondifferentiable case

® what if f not differentiable?

Solves problem? — nondifferentiable case

® what if f not differentiable?
® no, consider e.g., f(x,y) =[x —y|+ 3([lz]* + [|y[*)

&

Solves problem? — separable case

consider
minimize f(z) = g(z) + h(x)

assume that g is convex and differentiable
assume that h(z) = > | hi(x;) is PCC and non-differentiable
will a stationary point of algorithm solve problem?

Solves problem? — separable case

k41 k+1 k k
L1)

) k_
yes: let x7 = (e T T T Ty

first prove that x; optimizes ith update if:

(Vig(xF), yi — 23) + hi(yi) — hi(x;) >0, Vy; € R

proof: let

yE=xFtei(yi—xi) = (gc’f+17 . ,xffll,yi7x§+17 ..., xk), then
9(y) — 9(x¥) = (Va(x}),yi —x§) = (Vgil(x}), i —)

therefore, if condition holds, we have for all y*

FD) = F(xF) = g(yf) — g(xF) + ha(y:) — ha(a;)
> (Vig(x¥),yi — i) + hi(yi) — hi(z;) > 0

that is, f(x¥) has lowest value along ith coordinate

Solves problem? — separable case

® assume that x¥ = xé‘f' forall j=2,...,n
® that is, assume that we have reached a stationary point
® then, for any y and all x;? (since they are equal), we have

fly) = f(x5) =9y +Z (:)]

> (Vg(x} Z

—

(:)]

= Z<Vi9(X§)ayi — ;) + hi(y;) — hi(x;) >0
i=1

® that is, x; optimizes f

How about convergence?

strong convergence guarantees are somewhat scarce

we know that function value is nonincreasing, i.e.,
k41 k+1
flafl) < fla™)
assume level set {z | f(z) < f(z°)} closed bounded
= subsequence converges

2-block coordinate descent:

® sublinear convergence for smooth functions
® linear convergence under additional strong convexity

linear convergence under error bound property for F' = f + g with

® f smooth with component-wise strong convexity
® g=1c with C=1; x--- x I, and I; being intervals

Comments

® order of updates can be changed
® methods where coordinate to update is chosen on random exist

® can update on groups of coordinates instead of individual

10

Coordinate gradient descent

in (proximal) coordinate gradient descent, we solve problem
minimize f(z) + g(x)

assume g(x) = Y7, gi(x;) block-separable and convex
assume f block-smooth: let

X; = (.’171, ey Li—1, gy, Lj4 1y - - - ,l‘p)
Yy = (xl, ey Li—15Yiy Tig1y e - - ,.’L'p)
then f is block-smooth if it satisfies
Flys) < F66) + (VFGx), yi =0 + 5 llyi = il

for some L;, all x;,y; and i = {1,...,p}
equivalent condition

flyi) < F) + (Vaf (%), mi — @) + Sty — 2]

11

Coordinate gradient descent

® the algorithm looks like (assuming cyclic updates in 2,3)

1. choose block-coordinate i, =4 € {1,2,...,n} to update
_ o k+1 k41 k k
2. letxy = (z9 7, @, Ty T, Xp)
k _ (k+l k+1 ,k .k k
3. letx7 = ()", ..., 200,20, T, -, Tp)
4. compute

ot = argmin{f(x{) + (VF(x{), xi = i) + 5 xi — x{||* + g(xi)}

T

® fis approximated by block-smoothness upper bound

12

Simplification of main step

® recall
okl k+1 k k
Xi = (27", w T T X, Ty)
ko _ o k+l k+1 k Kk k
x; = (2", g, Ty

® the main step can be written as

x; — x5 1> + g(x:)}

bt = argmin{ f(xF) + (Vf(xF),x; —xF) + %

k

= argmin{(V; f(x}), z; — af) + G|z — 7| + gi(w:)}
T4

= argmin{ 5 |; — o + £ Vif ()II* + gi(2:)}

X4

= prox%gi (zF — %sz(xf))

® we take coordinate-wise forward-backward steps

13

Convergence

convergence if block-coordinate to update is randomly chosen
can use probabilities proportional to L] for v € [0,1]

® ~ = 0 implies uniform distribution

® ~ =1 implies coordinates with high L; are chosen more often
the convergence is in expectation or “with high probability”
some results on deterministic schemes also exist:

® cyclic order with g = 0 (smooth case)

® cyclic order with g = tc with C =C1 x --- x Cp
if p updates (one sweep) same cost as one gradient computation

= coordinate gradient descent faster than gradient descent

14

Smoothness with different metric

let's use a different metric in f block-smoothness
let W = diag(W1,...,W,) with W; > 0 and

X; = (l‘l,. ..,xi_l,xi,xi+1,...,xp)

Yi = (T1, s Tie1,Yi, Tit1, - Tp)
f is block-smooth with metric W if it satisfies
Fyi) < F(xi) +(Vf(xi),yi —xi) + 5llyi — xilly

for all x;,y; and i = {1,...,p}
equivalent to the above:

Fyi) < F(x0) + (Vaf (%0), 0 — i) + Sllyi — @il

previous block-smoothness obtained by W = diag(L11, ...

)

L,I

p

)

15

Generalized method with different metric

® the algorithm looks like (assuming cyclic updates in 2,3)

1. choose block-coordinate i, =4 € {1,2,...,n} to update
okt k+1 k k
2. letx; = (277, . 2] T, T, -, X))
ko _ okt k+1 _k _k k
3o let x7 = (@77, X T, Tt E)
4. compute

2T = argmin{ £ (x7) + (Vf(x1), % — i) + 3llxi — 7 [l + g(xi)}

Tq

® f again approximated by block-smoothness upper bound

16

Simplification of main step

recall
okl k+1 k k
Xi = ()", w T T X, Ty)
k __ k+1 k+1 _k .k k
x; = (27", g,y

the main step can be written as

2Tt = argmin{f(x7) + (VF(x). % — xf) + g% — x|y + g(x:)}

= argmin{(V; f(x}), z; — }) + 3|z — 2F |13y, + gi(2:)}
g3

= argmin{%||lz; — af + W'V f(xD)|3y, + gi ()}

T

we take skewed coordinate-wise forward-backward steps

(can use skewed metric also in normal forward-backward splitting)

17

Quadratic case

consider the quadratic case
minimize f(z) + g(x)

the function f(z) = 1a” Hx + ¢ & where

Hyy -+ Hyy @
Hyp Hpy, dp

assume that H positive semi-definite and H;; positive definite

assume g is block-separable (as before)

18

Assumption on H

the assumption that H;; positive definite not very conservative
consider the case with blocks of size 1

requirement is that all diagonal elements of H are positive
consider a rank 1 matrix H = hhT

® H,; =0 if and only if row and column i all zeros

to require H to be positive definite, it must have full rank

19

Algorithm

® apply generalized coordinate gradient descent with W, = Hy;
® the algorithm becomes (assuming cyclic updates in 2,3)

1. choose block-coordinate i, =4 € {1,2,...,n} to update
(k1 k+1 k k
2. letx; = (277, .. 2] @, T, - -, X))
k_ (k+l k+1 k .k k
3o let x7 = (), X, T, T, - X))
4. compute

it = argmin{ L ||z — af + Hy; 'V f (<913, + gi(x)}

zq

20

Simplification of main step

® recall that f(z) = 2" Ha + ¢"z,

x = (e k) forl, L)
and let
Ut =10,...,0,1,0,...,0]

® then

Vif(x}) = UT(Hx} +q) = Hyaf + Y Hyah ' +) Hya* +q;

j<i §>i

® inserting this into main step gives:

it = argmin{1|z; — o+ H;lvif(xf)ﬂim + gi(zi)}

ka3

= argmm{2 |z + H;;* Z Hijaht 4 Z Hizay + qi)||%,, + gi(z:)}

J<i j>i

= argmm{2x Hixi + x; Z H”xk+1 + Z Hz]x +qi) + gi(xi)}

J<i J>i

21

Compare to coordinate descent step

let F=f+yg
the ith update in the coordinate descent method is
k+1 k41 k+1 2k k
it = argmin F(zyt, . 2t x i1 Tp)
x;

since g block-separable, this can be written as

k k+1 k+1
Pl + +

U= argmin{f(zf T, .. 2l wab .,x};) + gi(z:)}

Ty

= argmm{zx, i 4 Ty ZHka'H + ZHZJ:K] + gl i + gi(x)}

j<i J>1

last step holds since

flz)_2m Hw+q T == ZZJBZ zgﬂfg-f'th T

11]1

22

Algorithms identical

in this setting iterates are identical
coordinate descent special case of coordinate gradient descent
to my knowledge, first time this link has been provided

why are iterates identical? since skewed block-smoothness
flyi) < F&) + (V). yi — xi) + 5llyi — xalliy
holds with equality for W = diag(Hi1, ..., Hpp) and

X; = (I’l,. ..,mi_hl’i,I’H_l,...,Ip)

yi= (371,. "’mi—17yi7xi+17"'a'rp)

23

Implications

® convergence for coordinate gradient descent more mature

® can use this to get new convergence rates of coordinate descent

24

Preconditioning

consider solving the problem using a first-order method
minimize f(z) + g(x)
change of variables = T'q (T invertible) gives problem
minimize f(Tq) +9(Tq) =: fr(q) + gr(q)

optimal x* to original problem is x* = T'q*
with appropriate 7', performance may be significantly improved

(Newton's method is invariant to change of variables)

25

Preconditioning in FB splitting

® solve min,{ fr(q) + gr(q)} using forward-backward splitting:

¢t = prox., . (Id — YV fr)q*

= argmin{gr(q) + 35 l¢ — ¢" +7Vfrd"|?}
q

= argmin{g(Tq) + a5 lla = d* +TTVF(Tq")|?}

= argmin{g(T'q) + (T"V(Tq"),q—q") + £ llg — ¢"[I*}
= argmin{g(Tq) + (VI(Tq"),Tq = Tq") + 5 lla — ¢"|I*}
=T argmin{g(x) + (Vf(a"),x —a*) + 5 |lo — a®|7-}

® we assumed that qu = 1%, therefore, iteration is equivalent to
#* = argmin{g(x) + f(«*) + (Vf ("), 2 — 2*) + 5 |lo — 2¥] 72}
xr
® standard FB splitting obtained by letting "= 1

® that is, we have a different quadratic approximation to f
® if approximation better, probably faster convergence! 26

Linear convergence

look at problem with properties that guarantee linear convergence
if f is o-strongly convex and -smooth then

VE/o—1 ¢ optimal parameters used

V/B/o+1

g;:_ﬂ if optimal parameters used

both rates get better with decreasing /0

® DR converges as

® FB converges as

most first-order methods perform better with decreasing 8/c

= choose preconditioner T such that 3/c decreased

27

Example

consider the problem with f(z) = 327 Hz + h™x where H > 0

then f is Apax(H)-smooth and Ay, (H)-strongly convex
that is B(f)/o(f) = Amax(H) /Amin (H) =: £(H)

what is 8(fr) and o(fr)?

we have fr(q) = f(Tq) = 3¢"THTq+ h™Tx

therefore B(fr) = Amax(TTHT) and o(fr) = Amin(TTHT)

28

Example

we have B(f7) = Amax(TTHT) and o(fr) = Amin (TTHT)

so the rates depend on Apmax(TT HT) /Amin(TTHT)

we want to choose T such that this ratio is minimized

by letting T = H~/2, we get Apax (TTHT) /Amin(TTHT) = 1
are there any drawbacks with this choice?

29

Full variable transformations

consider, e.g., forward backward splitting on

minimize fr(q) + gr(q)

with fr(q) = %qTTTHTq +hTTyq
this is given by

qk+1 _ proxrygT (Id . ’YVfT)qk — prOX'ygT (Id — ’Y(TTHqu + TTh))qk

forward step Id — y(TT HT¢* +TTh) a bit more expensive
backward step

prox. .. (2) = argénin{gT(Q) + %Hq — 2%}
= argmin{g(Tq) + 3 lg — z[*}
q

might be much more expensive (if g separable)
however, if T' diagonal = =~ unchanged computational cost!
30

Computing T’

in the quadratic case, we want to solve

minimize Apax(TTHT) /Amin(TTHT)
subject to T diagonal

this can be posed as (convex) semi-definite program
= optimal diagonal preconditioning can be achieved

drawback: computationally very expensive to find optimal T’
also limited to fairly small-scale problems

works in applications (MPC) where T can be computed offline

31

Heuristic methods to compute T

® the objective is to find diagonal T" such that ratio decreased
)\Inax (TTHT)/)\rnin (TTHT)

e finding T should be much faster than solving min,{f(z) + g(x)}

® cheap heuristics: 1-norm, 2-norm, and co-norm equilibration

32

Equilibration

let s=1,s=20r s=00

in symmetric s-norm equilibration, the objective is to find T s.t.:

I[TTHT):.|| =1 for all 4

we want the resulting matrix to have equal s-norm in every row

since matrix symmetric, also all columns have same s-norm

33

oo-norm equilibration

in co-norm equilibration co-norm of each row should be the same
we have |z]|c = max; |z;]

therefore set the absolute value of largest element in each row to 1
this is obtained by letting T}; = 1/v/Hy;

this is also called Jacobi scaling

34

1-norm equilibration

recall ||z|1 = >_, |«;| and that T" diagonal
let H = abs(H) and t = diag(T)
assume 7" > 0, then 1-norm of row ¢ is given by

[[T"HT)i|ly = Y |T0Hi Ty = T Y HijTj; = Ty Hit
j=1 j=1
therefore, 1-norm equilibration is obtained by solving
THt=1 & Ht-T'1=0
l.h.s. is gradient of function (recall ¢ > 0)
1tT Ht — log(t)

change of variables ¢t — e! makes it convex
solved readily by coordinate descent or Sinkhorn-Knopp algorithm

35

2-norm equilibration

in 2-norm equilibration we want all rows to have equal 2-norm
the squared 2-norm of row i is given by
n

IIT"HT)|5 = > (TuHyTj)* =Ta Y HETS = T H;
=1

19737
j=1

where square on vectors are element-wise
let S =172, and H = H? (element-wise)

then problem is same as in 1-norm case
SHs=1 < Hs—S5'1=0

solve using same techniques

36

If not linear convergence?

consider again a quadratic problem
minimize f(z) + g(x)

with f(z) = 22" Hz + h"z and g separable
if H not positive definite, we do not get linear convergence
we can use heuristic to choose T' by optimizing
minimize Apax(TTHT) /Amin>o(TTHT)
subject to T diagonal

where A\nins>o is smallest non-zero eigenvalue
can be posed a (convex) semi-definite program

can use equilibration heuristics to approximate solution

37

Dual algorithms

® consider the problem
minimize f(z) + g(Lz)
® such problems are often solved via the dual
minimize f*(—L"p) + g*(p) =: d(p) + g* (1)

® linear convergence rate of DR and FB depends on 3(d)/o(d)

38

Precondition dual problem

® we perform a linear change of variables for dual problem p = Tv
minimize f(—L*v) 4+ ¢*(Tv) = dr(p) + g1 (v)
® this is dual problem to

minimize f(z) + g(y)
subject to TLx =Ty

® or to the problem

minimize f(z) + gr-1(2)
subjectto TLx ==z

where gp-1(2) = g(T~'2)

39

Quadratic problems

consider again a quadratic problem
minimize f(z) + g(Lx)

with f(z) = 1a"Hxz + h"x, H positive definite, and g separable
the conjugate of f is

PN =5A=nTH (A =h)
therefore
dp) = f*(~LTp) = YL u+)TH (L u+ h)

i.e., a quadratic with Hessian LH LT

linear convergence of many algorithms if Ao (LH1LT) > 0

40

Selecting preconditioner

® we select preconditioner to minimize condition number of Hessian

minimize Apax(TTLH YLTT) /Apin (TTLHLLTT)
subject to T diagonal

® again, we select T' diagonal, if not, iteration complexity increased

41

If not linear convergence?

consider problems of the form
minimize fi(z) + fa(x) + g(Lx)

let f = f1+ fo and assume fi(z) = 327 Ha + hTx

assume fy does not have curvature (indicator function, piece-wise
linear)

precondition as if fo =0

then the dual to precondition is

dy(p) = (ff o =L")(n)
_ {é(LTu +h)THN (L u+h) if (LTp+q) € R(H)
00 else

where HT is the pseudo-inverse

42

Heuristic preconditioning

the dual to be preconditioned is

di(p) = (ff o —L") (1)
AT THN L 4)i (LT q) € R(H)
RS else

precondition by change of variables to get dp = (do T)

make dr as well conditioned as possible, i.e., select T as:
minimize Apax(TLHTLTT) /Aminso(TLHTLTT)
subject to T diagonal

reduces to linearly convergent preconditioner if H invertible

can be posed as (convex) semi-definite program

can use equilibration methods to find “good enough” T'

43

Envelope methods

we have considered methods for nonsmooth problems
what if we can formulate equivalent smooth problem?
here equivalent means the have same set of solutions

then could use smooth optimization to solve nonsmooth problems

44

Moreau envelope

® recall the Moreau envelope
Tf(z) = min{ f(z) + &l — 22}
® the gradient of 7 f is
V7 f(z) =~7"(1d - argmind f () + a5 lle = 2I1*})
=7 (1d - prox. ¢)z

e the gradient is v~ !-Lipschitz continuous
prox. ¢ firmly nonexpansive < Id — prox. firmly nonexpansive
o firml Id vy firml

45

Gradient method

the gradient method with ¢ = v to minimize the Moreau envelope:

AL = 2k v f(2F)
=X —ty7 2k - prox,yf(zk))
= proxwf(zk)
it is the proximal point algorithm on f

minimize a nonsmooth f by gradient method on smooth function
can use any method for smooth optimization to solve problem

46

Forward-backward splitting for quadratic problem

® assume that f(z) = 1o Hxz + h"x with H positive semi-definite
® assume also that g is proper closed and convex

® we want to solve
minimize f(z) + g(z)
® forward-backward splitting applied to this problem is
= prox., (1 — AV f)zk = prox.,, (I — yH)z" — ~h)
® let L, = (I —vH), then FB algorithm can be written as

bl — proxwg(lka —~h)

x
® further introduce h, = vg + 1| - ||?, then prox., = Vh}, i.e..:

a" = VR (Lya® — yh)

47

Forward-backward envelope

assume «y such that L, = (I —yH) invertible
consider the function, called the forward-backward envelope

FyP(x) = 3llzl|Z, — (A} o Ly)(z — LT yh)
the gradient of I, is given by (since L., = L)
VFB(x) = Lyx — LyVh: (Lyx — yh)

® consider the skewed gradient method on FEB:
gl =gk — L;1VF$B(xk)
=" — L7 (Lya" — L,Vh: (Lya" — yh))
=k — 2k 4 Vhi(Lwa:/C —vh)
= Vhi(Lyz* —yh)
= prox, (I — yH)a" — yh)
= prox,(I — YV f)a”

® it is the proximal gradient method

48

FB envelope stationary points

® stationary points of FB envelope satisfy

0=VF"®(z) = Lyx — LyVh:(Lx — vh)
® since L. assumed invertible, this is equivalent to

x = Vh (Lyx —vh) = prox, (I =V f)x

® set of critical points of envelope agrees with minimizers of f + g

49

FB envelope convexity

let Y E (07 %) = (07 m)

® then L, = (I — vH) is invertible and F};B is convex
® proof:
FEPB is convex & (h% o L) (x — L3 *yh) is 1-smooth w.r.t. |||z,

® we know h., is 1-strongly convex for all ~y
therefore h§ is 1-smooth, i.e.,

(15 0 Ly)(z — Ly 7vh) = h3(Lyy — ~h)

< Wy (Lo = yh) + (VIS (Lyw = vh), Lyy = Ly) + 5| L (2 —)|

= (h} 0 Ly)(x — Ly yh) + (Ly VR (Lyx = vh),y — 2) + 5[Ly (x = y)|®
= (1} 0 Ly)(x = L7 yh) + (V(h} 0 L)(z — LT'yh),y —) + g llz — yll 72

e thatis (b} o Ly)(z — L3 'vh) is 1-smooth w.r.t. || - ||z

50

FB envelope convexity

recall L, = (I —~vH)
let L, = USUT, where ¥ diagonal with singular values
since v € (0, m) then 0 < L, < I and o; € (0,1)

therefore
n n
a?TLix = 27U U T =0T8% = g o?v? < E o0}
i=1 i=1
T
<z'Lyx

that is, for v € (0, m) we have ||z — yl[r2 < [z —yllL,
therefore our function is 1-smooth w.r.t. the L.-norm

hence FI'® is convex (and also 1-smooth w.r.t. || - |z,)

51

Consequence

for quadratic f, the FB method with v € (0, %) is gradient
method to envelope

we have shown that stationary points coincide with optimizers to
min, {f(z) + g(x)}

we have shown that envelope convex in this case

then stationary points are minimizers of envelope

i.e., equivalent to minimize smooth envelope and to minimize
composite problem

can use any smooth method to solve problem

52

FB envelope and DR envelope

similar envelope function can be created for DR splitting
envelope function properties:

® take gradient step on envelope function to get back algorithm
® stationary points to envelopes coincide with fixed-points to
operators

in quadratic case, envelopes convex

then, can solve nonsmooth problems using smooth methods
can, e.g, incorporate second order information (quasi-Newton)
= might improve (asymptotic) convergence

caveat: envelope often not twice continuously differentiable
(however, twice continuously differentiable almost everywhere)

53

The error bound property

assume that 7" : R™ — R" is a-averaged
that is, assume that T = (1 — «)Id + R for nonexpansive R
assume that for all x € R"™, the following holds

distiyp(z) < 7]z — Rl

for some 7 € (0, 00)
iterate the operator as 2**1 = Tz*

then we get linear convergence in distance to fixed-point set

54

Linear convergence, proof

® proof: an a-averaged operator satisfies
|72 — Ty|]? < 2 — y|]? = 52 (1d - T)a — (1d — T)y)|?
® recall the error bound property
distyp(z) < 7]z — Rzl
=7z —(1-a Nz —a 'Tz|| = ra Yz — Tz|
® let x = z* and y = z* where z* € fixT is closest point to z*
dist?iXT(ackH) < okt —)2
< la® — 2| = 152 |a* — Ta®||?
< dist?iXT(xk) - a(lTiga)dist?iXT(xk)
= (1 - 25 dist? ()

T2

(recall Tz* = x* and Tk = 2++1)

1 _ a(l—a)

® that is, linear convergence with rate —

55

Questions

® what problems and algorithms satisfy error bound property?
® can we quantify 7 for those

® can it be used to show linear convergence for

® coordinate descent methods with operators (with cyclic updates)?
® FB splitting method with less restrictive assumptions?
® DR splitting method with less restrictive assumptions?

56

Problem splitting

to choose splitting is to formulate optimization problem on form

minimize f(z) + g(y)
subjectto Lz =y
main splitting rule:
“choose f, g, and L to get as cheap iterates as possible”
if, e.g, g separable, we would like to exploit this in algorithm
if many iterations, try different splitting or different algorithm

57

Algorithm selection for large-scale problems

® consider the following list of algorithms

coordinate gradient descent

coordinate descent

(stochastic) subgradient method

forward-backward splitting (and accelerated variants)
linearized ADMM

Douglas-Rachford splitting

ADMM

three-splitting method

envelope methods with second order information
active set methods (sometimes applicable, not covered here)
interior-point methods (not covered here)

® jteration complexity grows downwards in the list
® typically, number of iterations grows upwards in the list
= trade-off
® for large-scale problems
® start with (feasible) method with cheapest iteration cost
® if too many iterations, then traverse down the list

58

