
Algorithms III

Pontus Giselsson

1

Today’s lecture

• coordinate descent

• coordinate gradient descent

• preconditioning

• envelope methods

• the error bound framework

• algorithm selection

2

Coordinate descent

• we want to minimize f which is proper closed and convex
• in coordinate descent, we optimize over one variable at a time
• consider

f(x) = f(x1, x2, . . . , xn)

• algorithm is

xk+1
1 ∈ argmin

x1

f(x1, x
k
2 , x

k
3 , . . . , x

k
n)

xk+1
2 ∈ argmin

x2

f(xk+1
1 , x2, x

k
3 , . . . , x

k
n)

xk+1
3 ∈ argmin

x3

f(xk+1
1 , xk+1

2 , x3, . . . , x
k
n)

...

xk+1
n ∈ argmin

xn

f(xk+1
1 , xk+1

2 , xk+1
3 , . . . , xn)

• also called coordinate minimization algorithm
3

Solves problem? – differentiable case

• assume f differentiable, and stationary point found

• are we guaranteed to have found solution?

• yes, 0 = ∂f
∂xi

(x) for all i, that is

∇f(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
= 0

4

Solves problem? – differentiable case

• assume f differentiable, and stationary point found

• are we guaranteed to have found solution?

• yes, 0 = ∂f
∂xi

(x) for all i, that is

∇f(x) =

(
∂f

∂x1
(x),

∂f

∂x2
(x), . . . ,

∂f

∂xn
(x)

)
= 0

4

Solves problem? – nondifferentiable case

• what if f not differentiable?

• no, consider e.g., f(x, y) = |x− y|+ 1
2 (‖x‖2 + ‖y‖2)

5

Solves problem? – nondifferentiable case

• what if f not differentiable?

• no, consider e.g., f(x, y) = |x− y|+ 1
2 (‖x‖2 + ‖y‖2)

5

Solves problem? – separable case

• consider

minimize f(x) = g(x) + h(x)

• assume that g is convex and differentiable

• assume that h(x) =
∑n
i=1 hi(xi) is PCC and non-differentiable

• will a stationary point of algorithm solve problem?

6

Solves problem? – separable case

• yes: let xki = (xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
n)

• first prove that xi optimizes ith update if:

〈∇ig(xki), yi − xi〉+ hi(yi)− hi(xi) ≥ 0, ∀yi ∈ R

• proof: let
yki = xki + ei(yi − xi) = (xk+1

1 , . . . , xk+1
i−1 , yi, x

k
i+1, . . . , x

k
n), then

g(yki)− g(xki) ≥ 〈∇g(xki),yki − xki 〉 = 〈∇gi(xki), yi − xi〉

• therefore, if condition holds, we have for all yki

f(yki)− f(xki) = g(yki)− g(xki) + hi(yi)− hi(xi)
≥ 〈∇ig(xki), yi − xi〉+ hi(yi)− hi(xi) ≥ 0

• that is, f(xki) has lowest value along ith coordinate

7

Solves problem? – separable case

• assume that xk1 = xkj for all j = 2, . . . , n

• that is, assume that we have reached a stationary point

• then, for any y and all xkj (since they are equal), we have

f(y)− f(xj) = g(y)− g(xkj) +

n∑
i=1

[hi(yi)− hi(xi)]

≥ 〈∇g(xkj), y − xkj 〉+

n∑
i=1

[hi(yi)− hi(xi)]

=

n∑
i=1

〈∇ig(xkj), yi − xi〉+ hi(yi)− hi(xi)︸ ︷︷ ︸
≥0

≥ 0

• that is, xj optimizes f

8

How about convergence?

• strong convergence guarantees are somewhat scarce

• we know that function value is nonincreasing, i.e.,

f(xk+1
i+1) ≤ f(xk+1

i)

assume level set {x | f(x) ≤ f(x0)} closed bounded

⇒ subsequence converges

• 2-block coordinate descent:
• sublinear convergence for smooth functions
• linear convergence under additional strong convexity

• linear convergence under error bound property for F = f + g with
• f smooth with component-wise strong convexity
• g = ιC with C = I1 × · · · × In and Ii being intervals

9

Comments

• order of updates can be changed

• methods where coordinate to update is chosen on random exist

• can update on groups of coordinates instead of individual

10

Coordinate gradient descent

• in (proximal) coordinate gradient descent, we solve problem

minimize f(x) + g(x)

• assume g(x) =
∑p
i=1 gi(xi) block-separable and convex

• assume f block-smooth: let

xi = (x1, . . . , xi−1, xi, xi+1, . . . , xp)

yi = (x1, . . . , xi−1, yi, xi+1, . . . , xp)

• then f is block-smooth if it satisfies

f(yi) ≤ f(xi) + 〈∇f(xi),yi − xi〉+ Li
2 ‖yi − xi‖2

for some Li, all xi,yi and i = {1, . . . , p}
• equivalent condition

f(yi) ≤ f(xi) + 〈∇if(xi), yi − xi〉+ Li
2 ‖yi − xi‖

2

11

Coordinate gradient descent

• the algorithm looks like (assuming cyclic updates in 2,3)

1. choose block-coordinate ik = i ∈ {1, 2, . . . , n} to update
2. let xi = (xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
p)

3. let xki = (xk+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
p)

4. compute

xk+1
i = argmin

xi

{f(xki) + 〈∇f(xki),xi − xki 〉+ Li
2
‖xi − xki ‖2 + g(xi)}

• f is approximated by block-smoothness upper bound

12

Simplification of main step

• recall

xi = (xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
p)

xki = (xk+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
p

• the main step can be written as

xk+1
i = argmin

xi

{f(xki) + 〈∇f(xki),xi − xki 〉+ Li
2 ‖xi − xki ‖2 + g(xi)}

= argmin
xi

{〈∇if(xki), xi − xki 〉+ Li
2 ‖xi − x

k
i ‖2 + gi(xi)}

= argmin
xi

{Li2 ‖xi − x
k
i + 1

Li
∇if(xki)‖2 + gi(xi)}

= prox 1
Li
gi

(xki − 1
Li
∇if(xki))

• we take coordinate-wise forward-backward steps

13

Convergence

• convergence if block-coordinate to update is randomly chosen

• can use probabilities proportional to Lγi for γ ∈ [0, 1]
• γ = 0 implies uniform distribution
• γ = 1 implies coordinates with high Li are chosen more often

• the convergence is in expectation or “with high probability”

• some results on deterministic schemes also exist:
• cyclic order with g ≡ 0 (smooth case)
• cyclic order with g = ιC with C = C1 × · · · × Cp

• if p updates (one sweep) same cost as one gradient computation

⇒ coordinate gradient descent faster than gradient descent

14

Smoothness with different metric

• let’s use a different metric in f block-smoothness

• let W = diag(W1, . . . ,Wp) with Wi � 0 and

xi = (x1, . . . , xi−1, xi, xi+1, . . . , xp)

yi = (x1, . . . , xi−1, yi, xi+1, . . . , xp)

• f is block-smooth with metric W if it satisfies

f(yi) ≤ f(xi) + 〈∇f(xi),yi − xi〉+ 1
2‖yi − xi‖2W

for all xi,yi and i = {1, . . . , p}
• equivalent to the above:

f(yi) ≤ f(xi) + 〈∇if(xi), yi − xi〉+ 1
2‖yi − xi‖

2
Wi

• previous block-smoothness obtained by W = diag(L1I, . . . , LpI)

15

Generalized method with different metric

• the algorithm looks like (assuming cyclic updates in 2,3)

1. choose block-coordinate ik = i ∈ {1, 2, . . . , n} to update
2. let xi = (xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
n)

3. let xki = (xk+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
n)

4. compute

xk+1
i = argmin

xi

{f(xki) + 〈∇f(xki),xi − xki 〉+ 1
2
‖xi − xki ‖2W + g(xi)}

• f again approximated by block-smoothness upper bound

16

Simplification of main step

• recall

xi = (xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
p)

xki = (xk+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
p

• the main step can be written as

xk+1
i = argmin

xi

{f(xki) + 〈∇f(xki),xi − xki 〉+ 1
2‖xi − xki ‖2W + g(xi)}

= argmin
xi

{〈∇if(xki), xi − xki 〉+ 1
2‖xi − x

k
i ‖2Wi

+ gi(xi)}

= argmin
xi

{ 12‖xi − x
k
i +W−1i ∇if(xki)‖2Wi

+ gi(xi)}

• we take skewed coordinate-wise forward-backward steps

• (can use skewed metric also in normal forward-backward splitting)

17

Quadratic case

• consider the quadratic case

minimize f(x) + g(x)

• the function f(x) = 1
2x

THx+ qTx where

H =

H11 · · · H1p

...
. . .

...
Hp1 · · · Hpp

 , q =

q1...
qp


• assume that H positive semi-definite and Hii positive definite

• assume g is block-separable (as before)

18

Assumption on H

• the assumption that Hii positive definite not very conservative

• consider the case with blocks of size 1

• requirement is that all diagonal elements of H are positive

• consider a rank 1 matrix H = hhT

• Hii = 0 if and only if row and column i all zeros

• to require H to be positive definite, it must have full rank

19

Algorithm

• apply generalized coordinate gradient descent with Wi = Hii

• the algorithm becomes (assuming cyclic updates in 2,3)

1. choose block-coordinate ik = i ∈ {1, 2, . . . , n} to update
2. let xi = (xk+1

1 , . . . , xk+1
i−1 , xi, x

k
i+1, . . . , x

k
n)

3. let xki = (xk+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
n)

4. compute

xk+1
i = argmin

xi

{ 1
2
‖xi − xki +H−1

ii ∇if(x
k
i)‖2Hii + gi(xi)}

20

Simplification of main step

• recall that f(x) = 1
2x

THx+ qTx,

xki = (xk+1
1 , . . . , xk+1

i−1 , x
k
i , x

k
i+1, . . . , x

k
n)

and let

UT = [0, . . . , 0, I, 0, . . . , 0]

• then

∇if(xki) = UT (Hxki + q) = Hiix
k
i +

∑
j<i

Hijx
k+1
j +

∑
j>i

Hijx
k + qi

• inserting this into main step gives:

xk+1
i = argmin

xi

{ 1
2
‖xi − xki +H−1

ii ∇if(x
k
i)‖2Hii + gi(xi)}

= argmin
xi

{ 1
2
‖xi +H−1

ii (
∑
j<i

Hijx
k+1
j +

∑
j>i

Hijx
k
j + qi)‖2Hii + gi(xi)}

= argmin
xi

{ 1
2
xTi Hiixi + xTi (

∑
j<i

Hijx
k+1
j +

∑
j>i

Hijx
k
j + qi) + gi(xi)}

21

Compare to coordinate descent step

• let F = f + g

• the ith update in the coordinate descent method is

xk+1
i = argmin

xi

F (xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
p)

• since g block-separable, this can be written as

xk+1
i = argmin

xi

{f(xk+1
1 , . . . , xk+1

i−1 , xi, x
k
i+1, . . . , x

k
p) + gi(xi)}

= argmin
xi

{ 1
2
xTi Hiixi + xTi (

∑
j<i

Hijx
k+1
j +

∑
j>i

Hijx
k
j) + qTi xi + gi(xi)}

• last step holds since

f(x) = 1
2
xTHx+ qTx =

1

2

p∑
i=1

p∑
j=1

xTi Hijxj +

p∑
i=1

qTi xi

22

Algorithms identical

• in this setting iterates are identical

• coordinate descent special case of coordinate gradient descent

• to my knowledge, first time this link has been provided

• why are iterates identical? since skewed block-smoothness

f(yi) ≤ f(xi) + 〈∇f(xi),yi − xi〉+ 1
2‖yi − xi‖2W

holds with equality for W = diag(H11, . . . ,Hpp) and

xi = (x1, . . . , xi−1, xi, xi+1, . . . , xp)

yi = (x1, . . . , xi−1, yi, xi+1, . . . , xp)

23

Implications

• convergence for coordinate gradient descent more mature

• can use this to get new convergence rates of coordinate descent

24

Preconditioning

• consider solving the problem using a first-order method

minimize f(x) + g(x)

• change of variables x = Tq (T invertible) gives problem

minimize f(Tq) + g(Tq) =: fT (q) + gT (q)

• optimal x? to original problem is x? = Tq?

• with appropriate T , performance may be significantly improved

• (Newton’s method is invariant to change of variables)

25

Preconditioning in FB splitting

• solve minq{fT (q) + gT (q)} using forward-backward splitting:

qk+1 = proxγgT (Id− γ∇fT)qk

= argmin
q
{gT (q) + 1

2γ ‖q − q
k + γ∇fT qk‖2}

= argmin
q
{g(Tq) + 1

2γ ‖q − q
k + γTT∇f(Tqk)‖2}

= argmin
q
{g(Tq) + 〈TT∇f(Tqk), q − qk〉+ 1

2γ ‖q − q
k‖2}

= argmin
q
{g(Tq) + 〈∇f(Tqk), T q − Tqk〉+ 1

2γ ‖q − q
k‖2}

= T−1 argmin
x
{g(x) + 〈∇f(xk), x− xk〉+ 1

2γ ‖x− x
k‖2T−2}

• we assumed that Tqk = xk, therefore, iteration is equivalent to

xk+1 = argmin
x
{g(x) + f(xk) + 〈∇f(xk), x− xk〉+ 1

2γ ‖x− x
k‖2T−2}

• standard FB splitting obtained by letting T = I
• that is, we have a different quadratic approximation to f
• if approximation better, probably faster convergence! 26

Linear convergence

• look at problem with properties that guarantee linear convergence

• if f is σ-strongly convex and β-smooth then

• DR converges as

√
β/σ−1√
β/σ+1

if optimal parameters used

• FB converges as β/σ−1
β/σ+1

if optimal parameters used

• both rates get better with decreasing β/σ

• most first-order methods perform better with decreasing β/σ

⇒ choose preconditioner T such that β/σ decreased

27

Example

• consider the problem with f(x) = 1
2x

THx+ hTx where H � 0

• then f is λmax(H)-smooth and λmin(H)-strongly convex

• that is β(f)/σ(f) = λmax(H)/λmin(H) =: κ(H)

• what is β(fT) and σ(fT)?

• we have fT (q) = f(Tq) = 1
2q
TTHTq + hTTx

• therefore β(fT) = λmax(TTHT) and σ(fT) = λmin(TTHT)

28

Example

• we have β(fT) = λmax(TTHT) and σ(fT) = λmin(TTHT)

• so the rates depend on λmax(TTHT)/λmin(TTHT)

• we want to choose T such that this ratio is minimized

• by letting T = H−1/2, we get λmax(TTHT)/λmin(TTHT) = 1

• are there any drawbacks with this choice?

29

Full variable transformations

• consider, e.g., forward backward splitting on

minimize fT (q) + gT (q)

with fT (q) = 1
2q
TTTHTq + hTTq

• this is given by

qk+1 = proxγgT (Id− γ∇fT)qk = proxγgT (Id− γ(TTHTqk + TTh))qk

• forward step Id− γ(TTHTqk + TTh) a bit more expensive
• backward step

proxγgT (z) = argmin
q
{gT (q) + 1

2γ ‖q − z‖
2}

= argmin
q
{g(Tq) + 1

2γ ‖q − z‖
2}

might be much more expensive (if g separable)
• however, if T diagonal ⇒ ≈ unchanged computational cost!

30

Computing T

• in the quadratic case, we want to solve

minimize λmax(TTHT)/λmin(TTHT)
subject to T diagonal

• this can be posed as (convex) semi-definite program

⇒ optimal diagonal preconditioning can be achieved

• drawback: computationally very expensive to find optimal T
also limited to fairly small-scale problems

• works in applications (MPC) where T can be computed offline

31

Heuristic methods to compute T

• the objective is to find diagonal T such that ratio decreased

λmax(TTHT)/λmin(TTHT)

• finding T should be much faster than solving minx{f(x) + g(x)}
• cheap heuristics: 1-norm, 2-norm, and ∞-norm equilibration

32

Equilibration

• let s = 1, s = 2 or s =∞
• in symmetric s-norm equilibration, the objective is to find T s.t.:

‖[TTHT]i·‖ = 1 for all i

• we want the resulting matrix to have equal s-norm in every row

• since matrix symmetric, also all columns have same s-norm

33

∞-norm equilibration

• in ∞-norm equilibration ∞-norm of each row should be the same

• we have ‖x‖∞ = maxi |xi|
• therefore set the absolute value of largest element in each row to 1

• this is obtained by letting Tii = 1/
√
Hii

• this is also called Jacobi scaling

34

1-norm equilibration

• recall ‖x‖1 =
∑
i |xi| and that T diagonal

• let H̄ = abs(H) and t = diag(T)

• assume T > 0, then 1-norm of row i is given by

‖[TTHT]i‖1 =

n∑
j=1

|TiiHijTjj | = Tii

n∑
j=1

H̄ijTjj = TiiH̄i,·t

• therefore, 1-norm equilibration is obtained by solving

TH̄t = 1 ⇔ H̄t− T−11 = 0

• l.h.s. is gradient of function (recall t > 0)

1
2 t
T H̄t− log(t)

• change of variables t→ et makes it convex

• solved readily by coordinate descent or Sinkhorn-Knopp algorithm

35

2-norm equilibration

• in 2-norm equilibration we want all rows to have equal 2-norm

• the squared 2-norm of row i is given by

‖[TTHT]i‖22 =

n∑
j=1

(TiiHijTjj)
2 = T 2

ii

n∑
j=1

H̄2
ijT

2
jj = T 2

iiH̄
2
i,·t

2

where square on vectors are element-wise

• let S = T 2, and Ĥ = H̄2 (element-wise)

• then problem is same as in 1-norm case

SĤs = 1 ⇔ Ĥs− S−11 = 0

• solve using same techniques

36

If not linear convergence?

• consider again a quadratic problem

minimize f(x) + g(x)

with f(x) = 1
2x

THx+ hTx and g separable

• if H not positive definite, we do not get linear convergence

• we can use heuristic to choose T by optimizing

minimize λmax(TTHT)/λmin>0(TTHT)
subject to T diagonal

where λmin>0 is smallest non-zero eigenvalue

• can be posed a (convex) semi-definite program

• can use equilibration heuristics to approximate solution

37

Dual algorithms

• consider the problem

minimize f(x) + g(Lx)

• such problems are often solved via the dual

minimize f∗(−L∗µ) + g∗(µ) =: d(µ) + g∗(µ)

• linear convergence rate of DR and FB depends on β(d)/σ(d)

38

Precondition dual problem

• we perform a linear change of variables for dual problem µ = Tν

minimize f(−L∗ν) + g∗(Tν) = dT (µ) + g∗T (ν)

• this is dual problem to

minimize f(x) + g(y)
subject to TLx = Ty

• or to the problem

minimize f(x) + gT−1(z)
subject to TLx = z

where gT−1(z) = g(T−1z)

39

Quadratic problems

• consider again a quadratic problem

minimize f(x) + g(Lx)

with f(x) = 1
2x

THx+ hTx, H positive definite, and g separable

• the conjugate of f is

f∗(λ) = 1
2 (λ− h)TH−1(λ− h)

• therefore

d(µ) = f∗(−LTµ) = 1
2 (LTµ+ h)TH−1(LTµ+ h)

i.e., a quadratic with Hessian LH−1LT

• linear convergence of many algorithms if λmin(LH−1LT) > 0

40

Selecting preconditioner

• we select preconditioner to minimize condition number of Hessian

minimize λmax(TTLH−1LTT)/λmin(TTLH−1LTT)
subject to T diagonal

• again, we select T diagonal, if not, iteration complexity increased

41

If not linear convergence?

• consider problems of the form

minimize f1(x) + f2(x) + g(Lx)

• let f = f1 + f2 and assume f1(x) = 1
2x

THx+ hTx

• assume f2 does not have curvature (indicator function, piece-wise
linear)

• precondition as if f2 ≡ 0

• then the dual to precondition is

d1(µ) = (f∗1 ◦ −L∗)(µ)

=

{
1
2 (LTµ+ h)TH†(LTµ+ h) if (LTµ+ q) ∈ R(H)

∞ else

where H† is the pseudo-inverse

42

Heuristic preconditioning

• the dual to be preconditioned is

d1(µ) = (f∗1 ◦ −L∗)(µ)

=

{
1
2 (LTµ+ h)TH†(LTµ+ h) if (LTµ+ q) ∈ R(H)

∞ else

• precondition by change of variables to get dT = (d ◦ T)

• make dT as well conditioned as possible, i.e., select T as:

minimize λmax(TLH†LTT)/λmin>0(TLH†LTT)
subject to T diagonal

• reduces to linearly convergent preconditioner if H invertible

• can be posed as (convex) semi-definite program

• can use equilibration methods to find “good enough” T

43

Envelope methods

• we have considered methods for nonsmooth problems

• what if we can formulate equivalent smooth problem?

• here equivalent means the have same set of solutions

• then could use smooth optimization to solve nonsmooth problems

44

Moreau envelope

• recall the Moreau envelope

γf(z) = min
x
{f(x) + 1

2γ ‖x− z‖
2}

• the gradient of γf is

∇γf(z) = γ−1(Id− argmin
x
{f(x) + 1

2γ ‖x− z‖
2})

= γ−1(Id− proxγf)z

• the gradient is γ−1-Lipschitz continuous
(proxγf firmly nonexpansive ⇔ Id− proxγf firmly nonexpansive)

45

Gradient method

• the gradient method with t = γ to minimize the Moreau envelope:

zk+1 = zk − t∇γf(zk)

= zk − tγ−1(zk − proxγf (zk))

= proxγf (zk)

• it is the proximal point algorithm on f

• minimize a nonsmooth f by gradient method on smooth function

• can use any method for smooth optimization to solve problem

46

Forward-backward splitting for quadratic problem

• assume that f(x) = 1
2x

THx+ hTx with H positive semi-definite

• assume also that g is proper closed and convex

• we want to solve

minimize f(x) + g(x)

• forward-backward splitting applied to this problem is

xk+1 = proxγg(I − γ∇f)xk = proxγg((I − γH)xk − γh)

• let Lγ = (I − γH), then FB algorithm can be written as

xk+1 = proxγg(Lγx
k − γh)

• further introduce hγ = γg + 1
2‖ · ‖

2, then proxγg = ∇h∗γ , i.e.,:

xk+1 = ∇h∗γ(Lγx
k − γh)

47

Forward-backward envelope

• assume γ such that Lγ = (I − γH) invertible
• consider the function, called the forward-backward envelope

FFB
γ (x) = 1

2‖x‖
2
Lγ − (h∗γ ◦ Lγ)(x− L−1γ γh)

• the gradient of Fγ is given by (since Lγ = L∗γ)

∇FFB
γ (x) = Lγx− Lγ∇h∗γ(Lγx− γh)

• consider the skewed gradient method on FFB
γ :

xk+1 = xk − L−1γ ∇FFB
γ (xk)

= xk − L−1γ (Lγx
k − Lγ∇h∗γ(Lγx

k − γh))

= xk − xk +∇h∗γ(Lγx
k − γh)

= ∇h∗γ(Lγx
k − γh)

= proxγg((I − γH)xk − γh)

= proxγg(I − γ∇f)xk

• it is the proximal gradient method
48

FB envelope stationary points

• stationary points of FB envelope satisfy

0 = ∇FFB
γ (x) = Lγx− Lγ∇h∗γ(Lγx− γh)

• since Lγ assumed invertible, this is equivalent to

x = ∇h∗γ(Lγx− γh) = proxγg(I − γ∇f)x

• set of critical points of envelope agrees with minimizers of f + g

49

FB envelope convexity

• let γ ∈ (0, 1
β) = (0, 1

λmax(H))

• then Lγ = (I − γH) is invertible and FFB
γ is convex

• proof:
FFB
γ is convex ⇔ (h∗γ ◦Lγ)(x−L−1γ γh) is 1-smooth w.r.t. ‖ · ‖Lγ

• we know hγ is 1-strongly convex for all γ

• therefore h∗γ is 1-smooth, i.e.,

(h∗
γ ◦ Lγ)(x− L−1

γ γh) = h∗
γ(Lγy − γh)

≤ h∗
γ(Lγx− γh) + 〈∇h∗

γ(Lγx− γh), Lγy − Lγx〉+ 1
2
‖Lγ(x− y)‖2

= (h∗
γ ◦ Lγ)(x− L−1

γ γh) + 〈Lγ∇h∗
γ(Lγx− γh), y − x〉+ 1

2
‖Lγ(x− y)‖2

= (h∗
γ ◦ Lγ)(x− L−1

γ γh) + 〈∇(h∗
γ ◦ L)(x− L−1

γ γh), y − x〉+ 1
2
‖x− y‖2L2

γ

• that is (h∗γ ◦ Lγ)(x− L−1γ γh) is 1-smooth w.r.t. ‖ · ‖L2
γ

50

FB envelope convexity

• recall Lγ = (I − γH)

• let Lγ = UΣUT , where Σ diagonal with singular values

• since γ ∈ (0, 1
λmax(H)), then 0 ≺ Lγ ≺ I and σi ∈ (0, 1)

• therefore

xTL2
γx = xTUΣ2UTx = vTΣ2v =

n∑
i=1

σ2
i v

2
i ≤

n∑
i=1

σiv
2
i

≤ xTLγx

• that is, for γ ∈ (0, 1
λmax(H)) we have ‖x− y‖L2

γ
≤ ‖x− y‖Lγ

• therefore our function is 1-smooth w.r.t. the Lγ-norm

• hence FFB
γ is convex (and also 1-smooth w.r.t. ‖ · ‖Lγ)

51

Consequence

• for quadratic f , the FB method with γ ∈ (0, 1
β) is gradient

method to envelope

• we have shown that stationary points coincide with optimizers to
minx{f(x) + g(x)}

• we have shown that envelope convex in this case

• then stationary points are minimizers of envelope

• i.e., equivalent to minimize smooth envelope and to minimize
composite problem

• can use any smooth method to solve problem

52

FB envelope and DR envelope

• similar envelope function can be created for DR splitting

• envelope function properties:
• take gradient step on envelope function to get back algorithm
• stationary points to envelopes coincide with fixed-points to

operators

• in quadratic case, envelopes convex

• then, can solve nonsmooth problems using smooth methods

• can, e.g, incorporate second order information (quasi-Newton)

⇒ might improve (asymptotic) convergence

• caveat: envelope often not twice continuously differentiable
(however, twice continuously differentiable almost everywhere)

53

The error bound property

• assume that T : Rn → Rn is α-averaged

• that is, assume that T = (1− α)Id + αR for nonexpansive R

• assume that for all x ∈ Rn, the following holds

distfixR(x) ≤ τ‖x−Rx‖

for some τ ∈ (0,∞)

• iterate the operator as xk+1 = Txk

• then we get linear convergence in distance to fixed-point set

54

Linear convergence, proof

• proof: an α-averaged operator satisfies

‖Tx− Ty‖2 ≤ ‖x− y‖2 − 1−α
α ‖(Id− T)x− (Id− T)y)‖2

• recall the error bound property

distfixR(x) ≤ τ‖x−Rx‖
= τ‖x− (1− α−1)x− α−1Tx‖ = τα−1‖x− Tx‖

• let x = xk and y = x? where x? ∈ fixT is closest point to xk

dist2fixT (xk+1) ≤ ‖xk+1 − x?‖2

≤ ‖xk − x?‖2 − 1−α
α ‖x

k − Txk‖2

≤ dist2fixT (xk)− α(1−α)
τ2 dist2fixT (xk)

= (1− α(1−α)
τ2)dist2fixT (xk)

(recall Tx? = x? and Txk = xk+1)

• that is, linear convergence with rate
√

1− α(1−α)
τ2

55

Questions

• what problems and algorithms satisfy error bound property?

• can we quantify τ for those

• can it be used to show linear convergence for

• coordinate descent methods with operators (with cyclic updates)?
• FB splitting method with less restrictive assumptions?
• DR splitting method with less restrictive assumptions?

56

Problem splitting

• to choose splitting is to formulate optimization problem on form

minimize f(x) + g(y)
subject to Lx = y

• main splitting rule:

“choose f , g, and L to get as cheap iterates as possible”

• if, e.g, g separable, we would like to exploit this in algorithm

• if many iterations, try different splitting or different algorithm

57

Algorithm selection for large-scale problems

• consider the following list of algorithms
• coordinate gradient descent
• coordinate descent
• (stochastic) subgradient method
• forward-backward splitting (and accelerated variants)
• linearized ADMM
• Douglas-Rachford splitting
• ADMM
• three-splitting method
• envelope methods with second order information
• active set methods (sometimes applicable, not covered here)
• interior-point methods (not covered here)

• iteration complexity grows downwards in the list
• typically, number of iterations grows upwards in the list

⇒ trade-off
• for large-scale problems

• start with (feasible) method with cheapest iteration cost
• if too many iterations, then traverse down the list

58

