Evaluation of a Julia Control Toolbox

Martin Karlsson

Dept. of Automatic Control Lund University

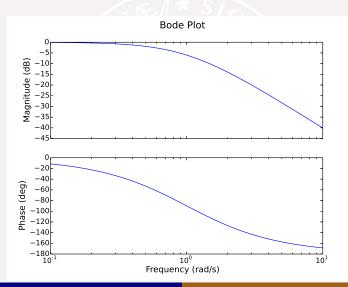
Introduction

- Control.jl (first hit on google; julia control toolbox)
- Julia 0.4 is required
- No documentation yet, but exported functions have docstrings
- Appears similar to other control systems design toolboxes, e.g. Control Systems Toolbox in Matlab.
 - Systems stored as transfer functions or state-space representations
 - Evaluation in both time and frequency domain
 - Stability and performance properties
- My approach: Evaluation of functionality, rather than stress test

Contents

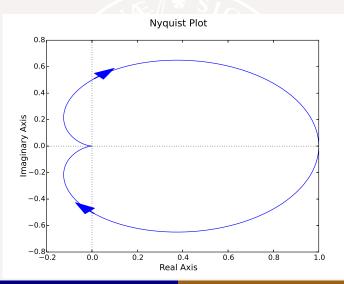
- Systems: Transfer functions and state-space representations
- Basic analysis: poles, zeros, gain etc.
- Frequency domain: Bode and Nyquist diagrams
- Time domain: step response etc.
- Controller synthesis
- Omparison with toolbox in Matlab

Transfer functions

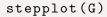

```
G = tf([1], [1, 2, 1])
```

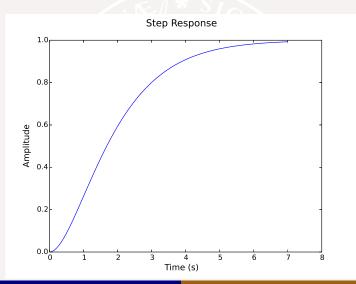
```
TransferFunction:
      1.0
s^2 + 2.0s + 1.0
pole(G)
-1
-1
tzero(G)
O-element Array{Float64,1}
gain(G)
1.0
```

State-space


Gss = convert(StateSpace, G)					
StateSpace:					
А	=				
		x1	x2		
	x1	-2.0	-1.0		
	x2	1.0	0.0		
В	=				
		u1			
	x1	1.0			
	x2	0.0			
С	=				
		x1 ()	-x2		
	y1	0.0	.0 16		
D	=				
		u1			
	y1	0.0			
Continuous-time state-space model					
Martin Karlsson Evaluation of a Julia Control Toolbox					

Bode diagram




Nyquist diagram

nyquistplot(G)

Step response

Impulse response

impulseplot(G)

Comparison with the Matlab toolbox

- The code does not look similar, i.e. not just a quick conversion
- Currently, the Matlab toolbox wins on w.o.

Conclusion

- Looks promising, but runs on an unstable version of Julia
- Only the basics worked without modification
- Difficult to evaluate the more advanced functionality

Assignment for next seminar- very optional

- Get the control toolbox
- Define a system of particular interest, either as a tf or ss
- Analyse your system. Generate Bode and Nyquist plots, evaluate the stability etc.
- And the final grade is...

Final grade

