

| Mo | April | 8  | at | 1315-1430 | lecture  |                      |           |
|----|-------|----|----|-----------|----------|----------------------|-----------|
| Mo | April | 15 | at | 1315-1600 | lecture  | and                  | exercises |
| Fr | April | 26 | at | 0915-1200 | lecture  | and                  | exercises |
| Tu | May   | 7  | at | 1315-1600 | lecture  | and                  | exercises |
| Mo | May   | 13 | at | 1315-1600 | lecture  | $\operatorname{and}$ | exercises |
| Mo | May   | 20 | at | 1315-1600 | lecture  | and                  | exercises |
| Mo | May   | 27 | at | 1315-1500 | exercise | es                   |           |

#### Building theoretical foundations for distributed control





We need methodology for

Decentralized specifications

Decentralized design

Verification of global behavior

# Example 2: A supply chain for fresh products



Fresh products degrade with time:

| $\begin{bmatrix} x_1(t+1) \\ x_2(t+1) \\ x_3(t+1) \\ x_4(t+1) \end{bmatrix} =$ | *<br>0<br>0 | 0<br>*<br>0<br>0 | 0<br>0<br>*<br>0 | 0<br>0<br>0<br>* | $\begin{bmatrix} x_1(t) \\ x_2(t) \\ x_3(t) \\ x_4(t) \end{bmatrix} +$ | $\begin{bmatrix} -u_1(t) + w_1(t) \\ u_1(t) - u_2(t) \\ u_2(t) - u_3(t) \\ u_3(t) + w_4(t) \end{bmatrix}$ |
|--------------------------------------------------------------------------------|-------------|------------------|------------------|------------------|------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|
| $\lfloor x_4(t+1) \rfloor$                                                     | [0          | 0                | 0                | *                | $\lfloor x_4(t) \rfloor$                                               | $u_3(t) + w_4(t)$                                                                                         |

## **Control with Information Constraints**



Can we stabilize the system? Are the optimal controllers linear? Can they be computed efficiently?

These questions will be adressed during the first two lectures.

#### **Example 1: A vehicle formation**



Each vehicle obeys the independent dynamics

| $\left\lceil x_1(t+1) \right\rceil$ | = | [* | 0 | 0 | 0 | $\left\lceil x_{1}(t) \right\rceil$ | $\left\lceil B_1 u_1(t) + w_1(t) \right\rceil$ |
|-------------------------------------|---|----|---|---|---|-------------------------------------|------------------------------------------------|
| $x_2(t+1)$                          |   | 0  | * | 0 | 0 | $x_2(t)$                            | $B_2u_2(t) + w_2(t)$                           |
| $x_3(t+1)$                          |   | 0  | 0 | * | 0 | $ x_3(t) ^+$                        | $B_3u_3(t) + w_3(t)$                           |
| $x_4(t+1)$                          |   | 0  | 0 | 0 | * | $x_4(t)$                            | $B_4u_4(t) + w_4(t)$                           |

The objective is to make  $\mathbf{E}|Cx_{i+1} - Cx_i|^2$  small for  $i = 1, \dots, 4$ .

How do we optimize?

What information needs to be communicated?

# **Example 3: Water distribution systems**



#### **Control Synthesis from a Decentralized Perspective**



Can local controllers be designed without knowledge of the entire system? What level of performance can be achieved this way?

This will be the main topic in of lecture 3-4.

### A Course of Six Lectures

- 1. Introduction
- Fixed modes, Team theory, Witsenhausen's counterexample
- Partial nestedness and quadratic invariance Control with information delays Example: Tele-operation
- Dual decomposition The saddle algorithm Example: The Internet protocol
- Distributed MPC Example: Water Supply Network
- 5. Spatially invariant systems.
- 6. Distributed control of positive systems. Consensus algorithms

## **Control with Information Constraints**



Can we stabilize the system?

# **Proof sketch**

A fixed mode implies a solution *x* of the eigenvalue equation

$$\lambda x = \left( A + \begin{bmatrix} B_1 & \dots & B_m \end{bmatrix} \begin{bmatrix} K_1 & & \\ & \ddots & \\ & & K_m \end{bmatrix} \begin{bmatrix} C_1 \\ \vdots \\ C_m \end{bmatrix} \right) x$$

that remains valid for all  $K_i$ . It follows that

$$\lambda x = \left( A + \begin{bmatrix} B_1 & \dots & B_m \end{bmatrix} \begin{bmatrix} C_1(\lambda) & & \\ & \ddots & \\ & & C_m(\lambda) \end{bmatrix} \begin{bmatrix} C_1 \\ \vdots \\ C_m \end{bmatrix} \right) x$$

so the same pole must be unaffected by  $C_1, \ldots, C_m$ .

If an eigenvalue can be moved by some  $K_i$ , then it is observable and an controllable by the the corresponding pair  $(B_i, C_i)$ , so it can be stabilized using  $C_i$ . This can be used repeatedly to stabilize all eigenvalues.

#### **Team Decision Problems**

Each decision maker has his own set of measurements. A common performance objective should be optimized.



Are the optimal controllers  $C_1$  and  $C_2$  linear time-invariant? Can they be computed efficiently?

- Introduction
- Fixed modes. [Wang/Davison 1973]
- Team theory. [Radner 1962]
- Witsenhausen's counterexample. [Witsenhausen 1968]

## Theorem (Wang/Davison 1973) on fixed modes

$$\begin{split} \mathbf{x}(t+1) &= A\mathbf{x}(t) + \sum_{i=1}^{m} B_{i}u_{i}(t) \\ \begin{bmatrix} y_{1}(t) \\ \vdots \\ y_{m}(t) \end{bmatrix} = \begin{bmatrix} C_{1}\mathbf{x}(t) \\ \cdots \\ C_{m}\mathbf{x}(t) \end{bmatrix} \end{split}$$

has a stabilizing controller of the form

$$U_1(z) = \mathcal{C}_1(z)Y_1(z)$$
 ...  $U_m(z) = \mathcal{C}_m(z)Y_m(z)$ 

if and only if there are no unstable "fixed modes", i.e. if

$$A + \begin{bmatrix} B_1 & \dots & B_m \end{bmatrix} \begin{bmatrix} K_1 & & \\ & \ddots & \\ & & K_m \end{bmatrix} \begin{bmatrix} C_1 \\ \vdots \\ C_m \end{bmatrix}$$

has no unstable eigenvalues that cannot be affected by  $K_1, \ldots, K_m$ .

# **Outline of Lecture 1**

- Introduction
- Fixed modes. [Wang/Davison 1973]
- Team theory. [Radner 1962]
- Witsenhausen's counterexample. [Witsenhausen 1968]

# **Team Decision Problems**

Minimize  $\mathbf{E} |Dw + B_1 \alpha_1(C_1 w) + B_2 \alpha_2(C_2 w)|^2$ when *w* is a normal distributed stochastic variable



By [Radner 1962], the optimal  $\alpha_1$  and  $\alpha_2$  are linear. **Proof:** Convexity gives optimality when gradient is zero.

## **Outline of Lecture 1**

## An incentive for signalling

- Introduction
- Fixed modes. [Wang/Davison 1973]
- ► Team theory. [Radner 1962]
- Witsenhausen's counterexample. [Witsenhausen 1968]



If one controller has information useful for the other, then there is an incentive to encode this information in the control inputs. This "signalling" creates complicated nonlinear control laws.

### **Next Lecture**

# The Witsenhausen counterexample



Minimize  $\mathbf{E}\left(\left|x+\mu_{1}(x)-\mu_{2}(x+\mu_{1}(x)+w)\right|^{2}+\left|\mu_{1}(x)\right|^{2}\right)$ 

when x and w are given Gaussian variables.

The best controllers are not linear, because for a fixed output variance of  $\mu_1$ , a non-Gaussian signal can transfer more information than a Gaussian one.

[Witsenhausen (1968) A counterexample in stochastic control]

| Lecture 1 | Introduction                  |
|-----------|-------------------------------|
|           | Fixed modes                   |
|           | Team theory                   |
|           | Witsenhausen's counterexample |

Lecture 2 Partial nestedness and quadratic invariance Control with information delays