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A Course on Distributed Control

Anders Rantzer and Enrico Lovisari

Schedule

Mo April 8 at 1315-1430 lecture

Mo April 15 at 1315-1600 lecture and exercises

Fr April 26 at 0915-1200 lecture and exercises

Tu May 7 at 1315-1600 lecture and exercises

Mo May 13 at 1315-1600 lecture and exercises

Mo May 20 at 1315-1600 lecture and exercises

Mo May 27 at 1315-1500 exercises

Building theoretical foundations for distributed control

We need methodology for

◮ Decentralized specifications

◮ Decentralized design

◮ Verification of global behavior
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Example 1: A vehicle formation

x1 x2 x3 x4 x5

Each vehicle obeys the independent dynamics
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The objective is to make EpCxi+1 − Cxip
2 small for i = 1, . . . , 4.

How do we optimize?

What information needs to be communicated?

Example 2: A supply chain for fresh products

x1 x2 x3 x4 x5

Fresh products degrade with time:
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Example 3: Water distribution systems
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Control with Information Constraints
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Can we stabilize the system? Are the optimal controllers

linear? Can they be computed efficiently?

These questions will be adressed during the first two lectures.

Control Synthesis from a Decentralized Perspective
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Can local controllers be designed without knowledge of the

entire system?

What level of performance can be achieved this way?

This will be the main topic in of lecture 3-4.
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A Course of Six Lectures

1. Introduction

Fixed modes, Team theory, Witsenhausen’s counterexample

2. Partial nestedness and quadratic invariance

Control with information delays

Example: Tele-operation

3. Dual decomposition

The saddle algorithm

Example: The Internet protocol

4. Distributed MPC

Example: Water Supply Network

5. Spatially invariant systems.

6. Distributed control of positive systems. Consensus algorithms

Outline of Lecture 1

◮ Introduction

◮ Fixed modes. [Wang/Davison 1973]

◮ Team theory. [Radner 1962]

◮ Witsenhausen’s counterexample. [Witsenhausen 1968]

Control with Information Constraints
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Can we stabilize the system?

Theorem (Wang/Davison 1973) on fixed modes
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has a stabilizing controller of the form

U1(z) = C1(z)Y1(z) . . . Um(z) = Cm(z)Ym(z)

if and only if there are no unstable “fixed modes”, i.e. if
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has no unstable eigenvalues that cannot be affected by K1, . . . , Km.

Proof sketch

A fixed mode implies a solution x of the eigenvalue equation
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that remains valid for all Ki. It follows that
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so the same pole must be unaffected by C1, . . . ,Cm.

If an eigenvalue can be moved by some Ki, then it is

observable and an controllable by the the corresponding pair

(Bi,Ci), so it can be stabilized using C i. This can be used

repeatedly to stabilize all eigenvalues.

Outline of Lecture 1

◮ Introduction

◮ Fixed modes. [Wang/Davison 1973]

◮ Team theory. [Radner 1962]

◮ Witsenhausen’s counterexample. [Witsenhausen 1968]

Team Decision Problems

Each decision maker has his own set of measurements.

A common performance objective should be optimized.
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Are the optimal controllers C1 and C2 linear time-invariant?

Can they be computed efficiently?

Team Decision Problems

Minimize E pDw+ B1α 1(C1w) + B2α 2(C2w)p
2

when w is a normal distributed stochastic variable
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By [Radner 1962], the optimal α 1 and α 2 are linear.

Proof: Convexity gives optimality when gradient is zero.
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Outline of Lecture 1

◮ Introduction

◮ Fixed modes. [Wang/Davison 1973]

◮ Team theory. [Radner 1962]

◮ Witsenhausen’s counterexample. [Witsenhausen 1968]

An incentive for signalling
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If one controller has information useful for the other, then there

is an incentive to encode this information in the control inputs.

This “signalling” creates complicated nonlinear control laws.

The Witsenhausen counterexample

d dd µ2(⋅)
?- - -µ1(⋅)-

6
- -

6

w

e−x

Minimize E
(
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)∣
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2
)

when x and w are given Gaussian variables.

The best controllers are not linear, because for a fixed output

variance of µ1, a non-Gaussian signal can transfer more information

than a Gaussian one.

[ Witsenhausen (1968) A counterexample in stochastic control ]

Next Lecture

Lecture 1 Introduction

Fixed modes

Team theory

Witsenhausen’s counterexample

Lecture 2 Partial nestedness and quadratic invariance

Control with information delays


